Responsive image
博碩士論文 etd-0725103-162528 詳細資訊
Title page for etd-0725103-162528
論文名稱
Title
電氣接點電弧特性與損耗形態機制之基礎研究
Fundamental Studies on Arc Characteristics and Erosion Mechanism of Electrical Contacts.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-17
繳交日期
Date of Submission
2003-07-25
關鍵字
Keywords
銀接點、靜態間隙、損耗、電弧放電、熔焊
Silver contacts, Welding, Erosion, Arc discharge, Static gap
統計
Statistics
本論文已被瀏覽 5689 次,被下載 2219
The thesis/dissertation has been browsed 5689 times, has been downloaded 2219 times.
中文摘要
摘 要

電氣接點在開閉期間產生的電弧行為不僅影響其表面形態而且會造成嚴重的損耗。其損耗係由機械應力和熔融電橋以及電弧等因素所造成,因而損耗機制極為複雜。因此,為了避免機械應力的影響及減少無數的電弧衝擊之複雜性,而可釐清電弧與損耗機制的關係,本研究主要使用單發放電之靜態接點電蝕試驗機實驗探討脈衝電壓、電極間隙及電弧持續時間對銀基接點材料的電弧損耗特性與機制之影響。同時與動態接點試驗的相關結果互相驗證。
從電弧損耗特性的探討結果得知,在脈衝電壓32V至500V和間隙距離0.2mm至40mm條件下,可區分出放電與未放電區域之邊界,且建立電弧初始之最小脈衝電壓與間隙距離之經驗式。當脈衝電壓小於200V時,電蝕面積隨著間隙距離的增加而呈線性增加,這主要受金屬相電弧的影響。但是,當脈衝電壓大於200V時,電蝕面積會隨著間隙距離的增加到最大值之後,再逐漸減少。這是受氣相電弧的增強之影響。
從電弧損耗機制的探討結果得知,電弧放電區域可區分為金屬電橋相(B)、金屬電弧相(M)與氣相電弧相(G)等三種損耗形態。亦即,在間隙距離為0.2mm時,隨著脈衝電壓的增加,損耗的形態依序從B相經B+M混合相和M相,及M+G混合相發生變化。又依電子傳輸的模式,損耗形態的B相、B+M相和M相是由熱離放射所主導,M+G相則由熱離放射與電場放射之混合所造成的結果。當脈衝電壓500V時隨著間隙距離的增加,陽極接點表面的凹洞周圍的金屬顆粒顯現出分散飛濺和更粉末化,最後消失。此結果乃由於氣體相電弧量逐漸的增強作用所造成。
在抗熔焊能力的探討結果得知,以靜態接點試驗在脈衝電壓500V和電弧能量為增至14焦耳以上時,Ag-Ni和Ag-CdO及Ag-SnO2接點材料發生熔焊時之臨界靜態間隙距離分別為3mm、8mm及15mm。這顯示Ag-Ni接點具有最佳抗熔焊能力。另一方面,以動態接點開閉試驗在電弧能量增至10焦耳以內時,抗電弧損耗、抗熔焊能力及熔焊面積大小順序為Ag-CdO>Ag-SnO2>Ag-Ni接點材料。然而,當電弧能量增至14焦耳以上時,抗電弧損耗、抗熔焊能力及熔焊面積大小順序為Ag-Ni>Ag-CdO>Ag-SnO2接點材料,其與靜態抗熔焊試驗之結果相當一致。
此外,藉由X光繞射法、差熱分析和熱重實驗分析銀基接點材料之損耗表面可得知,當電弧能量增至10焦耳以上時Ag-CdO和Ag-SnO2混合物分別局部分解為Ag-Cd和Ag-Sn合金材料,此造成抗電弧損耗及抗熔焊能力的降低。另一方面,Ag-Ni接點表面由於NiO的分散而有助於降低接點表面的熔焊傾向,導致Ag-Ni接點材料的抗損耗及抗熔焊之能力皆優於其他銀氧化物接點材料。
Abstract
Abstract
The arc behavior during the closing and opening of electrical contacts not only influences the surface morphology, but also causes the erosion of contact material. The mechanical stresses, the molten bridge, and the arc cause this erosion. Consequently, the erosion mechanism is very complex. Therefore, to avoid the influences of mechanical stresses and numerous arc striking, static-gap experiments with a single arc discharge are conducted to investigate the effects of pulse voltage, gap distance, and arc duration on the erosion characteristics and mechanism of silver based contact materials. Moreover, this experimental result is verified by the finding of the dynamic testing of electrical contacts.
The results of the erosion characteristics show that the arcing and non-arcing regions have been distinguished at the supply voltage from 32 V to 500 V and the gap distance from 0.2 mm to 40 mm. The empirical formula for the minimum pulse voltage at arc initiation in terms of gap distance is established. When the pulse voltage is smaller than 200 V, the erosion area increases with increasing gap distance due to the action of the metallic-phase arc. However, when the pulse voltage is greater than 200 V, with increasing gap distance, the erosion area increases to a maxim, and finally diminishes due to the increase in the amount of gaseous-phase arc.
The results of the erosion mechanism show that the arcing region is classified into three erosion patterns, namely, the molten metal bridge (B), metallic-phase arc (M), and gaseous-phase arc (G). At the gap distance of 0.2 mm, the erosion pattern of anode silver is varied from B, through B+M, and, M, to M+G. According to the electron transfer across triangular potential barrier, the thermionic emission causes the erosion patterns of B, B+M, and M, and mixed thermionic and field emission results in the erosion pattern of M+G. When the pulse voltage is 500 V, with increasing gap distance, the splashing of metallic particles around the anode crater becomes more dispersed, shorter with more silver powder, and finally disappeared with a little silver powder due to the influence of the gaseous-phase arc.
The results of the anti-weld ability show that when the pulse voltage is 500 V and the arc energy is grater than 14 J at the static-gap experiments, the critical gap distance to produce welding for Ag-Ni, Ag-CdO, and Ag-SnO2 is 3 mm, 8 mm, and 15 mm, respectively. This indicates Ag-Ni contact possesses the best anti-weld ability. On the other hand, the results of dynamic testing of electrical contacts show that at the arc energy less than 10 J, the anti-erosion, anti-weld ability, and the welding area are seen to increase with contact materials in the following order: Ag-CdO > Ag-SnO2 > Ag-Ni. However, when the arc energy is greater than 10 J, the anti-erosion, anti-weld ability, and the erosion area are seen to increase in the reverse order: Ag-SnO2 < Ag-CdO < Ag-Ni, which are in very good agreement with the results of static-gap experiments.
Furthermore, the erosion surface of the silver-based contact materials can be observed and analyzed by using the X-ray diffraction method (XRD), differential thermal analysis (DTA), and gravitation thermal analyzer (GTA). Results show that when the arc energy is greater than 14 J, Ag-CdO and Ag-SnO2 have been decomposed into Ag-Cd and Ag-Sn alloys, respectively, which reduce their anti-weld ability. On the other hand, the welding trend has been reduced due to the dispersion of NiO on the surface of Ag-Ni contact. Consequently, the anti-erosion and anti-weld ability for the Ag-Ni contacts are better than those of the other Ag-MeO contact materials.
目次 Table of Contents
總目錄

中文摘要 i
總目錄 iii
圖目錄 vi
表目錄 xi
符號說明 xii
第一章 諸論
1-1 研究動機 1
1-2 放電現象的發生與種類 4
1-3 氣體放電原理 7
1-3-1 電漿的形成 7
1-3-2 電子的放射 11
1-3-3 電弧損耗的形態 14
1-4 文獻回顧 15
1-4-1 氣體崩潰的探討 15
1-4-2 接點電弧的特性 18
1-4-3 接點材料的損耗與轉移 23
1-4-4 靜態間隙放電對接點材料的探討 26
1-4-5 接點材料的抗熔與黏著 28
1-5 本論文的研究方向 29
1-6 本論文的架構 32
第二章 靜態間隙銀接點電弧特性之研究
2-1 前言 34
2-2 實驗設備與實驗程序 35
2-2-1實驗設備 35
2-2-2實驗材料與實驗條件 44
2-2-3實驗步驟 46
2-3 實驗結果與討論 50
2-3-1 電弧放電圖 50
2-3-2 在界面之放電行為 55
2-3-3 銀接點表面的電蝕面積 62
2-3-4 靜態間隙的電弧相轉移 65
2-4 結論 67
第三章 靜態間隙銀接點損耗形態機制之研究
3-1 前言 69
3-2 實驗條件與程序 70
3-3 實驗結果與討論 73
3-3-1 電弧放電門檻圖 73
3-3-2 觀察陽極損耗的表面 76
3-3-3 電弧損耗的特性 85
3-3-4 極性對損耗形成的影響 92
3-4 結論 96
第四章 銀基接點材料的損耗與抗熔焊性能的分析
4-1 前言 98
4-2 實驗設備與實驗程序 100
4-2-1 實驗設備 100
4-2-2 實驗材料與實驗條件 105
4-2-3 實驗步驟 108
4-3 實驗結果與討論 109
4-3-1 材料的損耗與電弧的特性 109
4-3-2 接點表面的劣化分析 121
4-3-2-1 Ag-MeO接點表面的形態分析 121
4-3-2-2 X-ray繞射與熱分析 125
4-3-3 動態接點材料的熔焊特性 131
4-3-4 靜態間隙放電對接點材料的熔焊特性 138
4-4 結論 144
第五章 總結與展望
5-1 總結 146
5-2 展望 148
參考文獻 150
附錄A 161
附錄B 163
研究著作目錄 165
作者簡介 167
參考文獻 References
參考文獻
1. L. H. Germer and W. S. Boyle, Two distinct types of short arcs , J. Appl. Phys., vol. 27, 1956, pp.32-39.
2. J. M. Meek and J. D. Craggs, Electrical breakdown of gases, 1953, (Oxford:Oxford University Press).
3. E. L. E. Wheatcroft, Gaseous electrical conductors , 1938, (Oxford:At the Clarendon Press ).
4. Brian Chapman, Glow discharge processes, John Wiley and Sons, 1980.
5. Essam Nasser, Fundamentals of gaseous ionization and plasma electronics, John Wiley and Sons, 1971.chap.7.
6. F. Paschen, Wied. Ann., vol.37, 1889, pp.69-96.
7. R. Holm, Electrical contacts, Fourth edition, New York:Springer-Verlag, 1967.
8. L. H. Germer, Electrical breakdown between close electrodes in air, J. Appl. Phys., vol.30, 1959, pp.46-51.
9. L. H. Germer, Physical processes in contact erosion, J. Appl. Phys., vol. 29, 1958, pp.1067-1082.
10. M. M. Atalla, Arcing of electrical contacts in telephone switching circuits, Part I-Theory of the initiation of the short arc, The Bell system Technical Journal, 1953, pp.1231-1243.
11. M. M. Atalla, Arcing of electrical contacts in telephone switching circuits, Part II-Characteristics of the short arc, The Bell system Technical Journal, 1953, pp.1493-1506.
12. L. Cranberg, The initiation of electrical breakdown in vacuum, J. of App. Phys., vol.23, no.5, 1952, pp.518-522.
13. P. Osmokrovic`, Mechanism of electrical breakdown of gases at very low pressure and interelectrode gap values, IEEE transactions on Plasma Science, vol.21, no.6, 1993, pp.645-653.
14. P. G. Slade and E. D. Taylor, Electrical breakdown in atmospheric air between closely spaced(0.2mm-40mm) electrical contacts, IEEE Trans. On Components and Packaging Technologies, vol. 25, no.3, 2002, pp.390-396.
15. K. Sawa and Z. K. Chen, Arc discharge at electrical contact, IEICE Trans. Commun., vol. E79-B, 1996, pp.439-446.
16. Z. K. Chen and K. Sawa, Effect of arc behavior on material transfer:A review, IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, vol. 21, no. 2, 1998, pp. 310-322.
17. F. LL. Jones and E. T. de la Perrelle, Field emission of electrons in discharge, Proc. Roy. Soc. A, vol. 216, 1953, pp.267-279.
18. T. H. Lee, T-F theory of electron emission in high-current arcs, J. Appl. Phys., vol. 30, 1959, pp.167-171.
19. P. J. Boddy and T. Utsumi, Fluctuation of arc potential caused by metal-vapor diffusion in arcs in air, J. Appl. Phys., vol. 42, 1971, pp.3369-3373.
20. E. W. Gray, Some spectroscopic observations of the two regions, IEEE Trans. Plasma Sci., vol. 1, 1973, pp.30-33.
21. E. W. Gray and J. R. Pharney, Electrode erosion by particle ejection in low-current arcs, J. Appl. Phys., vol. 45, no. 2, 1974, pp.667-671.
22. R. E. Cuthrell, Low voltage initiation of damaging arcs between electrical contacts, IEEE Trans. Parts., Hybrids, Packaging, vol. PHP-12, 1976, pp.56-61.
23. E. W. Gray and J. R. Pharney, Statical behavior of break arc duration and the minimum arc sustaining current, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-2, 1979, pp.12-15.
24. T. Takagi and H. Inoue, Distribution of arc duration and material wear due to arc for Ag, Cu ,and Pd contacts, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-2, 1979, pp.20-24.
25. T. Takagi, Variations of arc duration of electric contacts due to controllable atmospheric condition, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-8, 1985, pp.29-33.
26. H. Sone and T. Takagi, Role of the metallic phase arc discharge on arc erosion in Ag contacts, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 13, 1990, pp.13-19.
27. H. Sone, H. Ishida, and T. Takagi, Electrode temperature dependency on arc and erosion in electric contact, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 14, 1991, pp.315-318.
28. Z. K. Chen and K. Sawa, The investigation of surface characteristics and contact resistance of DC relay contacts, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol.16, no.2, 1993, pp.211-219.
29. N. B. Jemma, J. L. Queffelec, and D. Travers, Some investigations on slow and fast arc voltage fluctuation for contact materials proceeding in various gases and direct current, IEEE Trans. Comp., Hybrids, Manuf. Technol. , vol. 14, no. 1, 1991, pp.113-117.
30. S. M. Abu Sharkh and T. W. McBride, Voltage steps in atmospheric low current arcs between opening silver metal oxide contacts, Proc. 43rd IEEE Holm Conf. on Electrical Contacts, 1997, pp.233-236.
31. P. G. Slade , An investigation of current interruption in low-voltage circuits , IEEE Trans. Parts, Materials, Packaging, vol. PMP-5, 1969, pp.56-61.
32. C. H. Leung and A. Lee , Contact erosion in automotive DC relays , IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 14, 1991, pp.101-108.
33. K. Itoyama and G. Matsumoto, Velocity of the moving cathod spot in breaking contact arcs , IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-1, 1978, pp.152-157.
34. K. Itoyama , Contact erosion pattern of DC break arcs , IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-2, 1979, pp.522-527.
35. K. Itoyama and G. Matsumoto, Formation process of the crater structures of Ni and Cu contacts at breaking arcs , IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-4, 1981, pp.52-56.
36. Zhuan-Ke Chen, Wear and Contamination of Electroplated Gold Films in Line Contact , IEEE Trans. Comp., Hybrids, Manuf. Technol., vol.15, No.3, 1992, pp.378-385.
37. Zhuan-Ke Chen and Koichiro Sawa , Characteristics of Ag contact morphology in breaking arcs , Wear , no.199, 1996, pp.237-244.
38. J. J. Lander and L.H.Germer , The bridge erosion of electrical contacts. Part I., J. Appl. Phys., no.19, 1948, pp.910.
39. Z. K. Chen and K. Sawa, Particle sputtering and deposition mechanism for material transfer in breaking arcs, J. Appl. Phys., vol. 76, no.6, 1994, pp.3326-3331.
40. J. Swingler and J. W. McBride, A comparison of the erosion and arc characteristics of Ag/CdO and Ag/SnO2 contact material under DC break condition, Proc. 41st IEEE Holm Conf. on Electrical Contacts, 1995, pp.381-392.
41. J. C. Gustafson, H. J. Kim, and R. C. Bevington, Arc erosion studies of matrix-strengthened silver-cadmium oxide, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol.CHMT-6, No.1, 1983, pp.122-129.
42. P. C. Wingert and H. J. Kim, Development of the arc-induced erosion surface in silver-cadmium oxide, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol.CHMY-8, No.1, 1985, pp.119-122.
43. P. C. Wingert and C. H. Leung, Comparision of the inherent arc erosion behaviors of silver-cadmium oxide and silver-tin oxide contact materials, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. CHMT-10, No.1, 1987, pp.56-62.
44. S. Kang and C. Brecher, Cracking mechanisms in Ag-SnO2 contact materials and their role in the erosion process, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 12, No.1, 1989, pp.32-38.
45. P. C. Wingert and G. Horn, The effect of CdO on the ststic gap arc erosion of silver-based contacts, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 16, No.2, 1993, pp.190-197.
46. M. J. Vasile and G. W. Kammlott , Scanning electronic microscopy of contact surfaces before and after arcing, IEEE Trans. Parts., Hybrids, Packaging, vol. PMP-7, 1971, pp. 16-22.
47. M. J. Vasile and G. W. Kammlott, Anode crater formation by pulse arcs, J. Appl. Phys., vol. 46, No.2, 1975, pp.618-623.
48. 吉田清,高橋篤夫:W接點開離時氣體相電弧轉移對氣壓的影響,日本通信工學會論文集, J75-C-H-6, 1992,pp.260.
49. B. J. Wang, N. Saka, and E. Rabinowicz, Static-gap single-spark erosion of Ag-CdO and pure metal electrodes, Wear, 157, 1992, pp.31-49.
50. B. J. Wang, N. Saka, and E. Rabinowicz, Static gap erosion of Ag-CdO electrodes, IEEE Trans. Comp., Hybrids, Manuf. Technol., vol. 14, No.2, 1991, pp.374-385.
51. M. Lindmayer and K. H. Schroder, The effect unsysmetrical material combination on the contact and switching behavior, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. CHMT-2, 1979, pp.41-45.
52. K. Fujiwara and Y. Yamaguchi, Adhesion characteristics of Ag-60Pd alloy under extremely short arcs on closure, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. CHMT-2, 1979, pp.337-342.
53. P. P. P. Koren, P. G. slade, and C. Y. lin, Welding characteristics of Ag-W contacts under high-current conditions, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. CHMT-3, 1980, pp.50-55.
54. C. G. Chen, The effect of arcing on the welding characteristics of silver-cadmium oxide, silver-nickel and silver-tungsten contacts, in Proc. 10th Int. Conf. On Electric Contact Phenomena, 1980, pp. 357-365.
55. A. L. Tslaf, A thermophsical criterion for the weldablity of electric contact material in steadystate regime, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. CHMT-5, 1982, pp.147-152.
56. K. H. Schroder, Silver-metal oxides as contact materials, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. CHMT-10, 1987, pp.127-134.
57. E. Walczuk, S. stolarz, and K. Wojtasik, Experimental study of Ag-W-Re composite material under high-current conditions, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. CHMT-10, 1987, pp.283-289.
58. C. H. Leung and P. C. Wingert, Microstructure effectives on dynamic welding of Ag/W contacts, IEEE Trans. Comp., Hybrids, manuf. Technol., vol. 11, 1988, pp.64-69.
59. F. A. Holmes and P. G. Slade, Pip and crater formation during interruption of alternating current circuits, IEEE Trans. Components, Hybrids, and Manufact. Technol. ,vol. CHMT-1, 1978, pp.59-65.
60. F. A. Holmes and P. G. Slade, The erosion characteristics of Ag contacts and the effect of adding a small percentage of W, IEEE Trans. Components, Hybrids, and Manufact. Technol. ,vol. PHP-13, 1977, pp.23-30.
61. T. Tamai, Ellipsometric analysis for growth of Ag2S film and effect of oil film on corrosion resistance of Ag contact surface, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 12, no.2, 1989, pp.43-47.
62. M. Hasegawa, T. Yamamoto, and K. Sawa, Significant increase of contact resistance of silver contacts by mechanical switching actions, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 15, 1992, pp.177-182.
63. T. B. Lane and J. R. Hughes, A study of the oil film formation in gears by electrical resistance measurements, Br. J. Appl. Phys., vol.3, 1952, pp.315-318.
64. W. W. S. Boyle and L. H. Germer, The anode of mechanism of extremely short arcs, J. Appl. Phys., vol. 26, 1955, pp.571-574.
65. L. H. Germer, Electrical breakdown between close electrodes in air, J. Appl. Phys., vol.30, 1959, pp.46-51.
66. L. H. Germer and J. L. Smith, Activation of electrical contacts by organic vapors, Bell System Tech. J., vol. 36, 1957, pp.769-795.
67. P. G. Slade, ed., Electrical contacts principles and applications, Marcel Dekker, Inc., New York, 1999, pp.433-572.
68. Z. K. Chen, H. Mizukoshi, and K. Sawa, Contact erosion patterns of Pd material in DC breaking, IEEE Trans. Comp., Hybrids, Manuf. Technol. Part A, vol. 17, 1994, pp.61-67.
69. W. Rieder and V. Weichsler, Make erosion mechanism of Ag/CdO and Ag/SnO2 contact, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 15, 1992, pp.332-338.
70. P. Wingert, R. Bevington, and G. Horn, The effect of graphite additions on the performance of silver-nickel contacts, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 14, no. 1, 1991, pp.95-100.
71. E. W. Gray, Voltage fluctuations in low-current atmospheric arcs, J. Appl. Phys., vol. 43, no. 11, 1972, pp.4573-4575.
72. A. Takahashi and K. Yoshida, Condition of transition from metallic to gaseous phase in inductive break arc, Proc. Int. Conf. Elect. Contacts, Electromech. Components and Their Applications, Nagoya Japan, 1986, pp.409-416.
73. K. Yoshida and A. Takahashi, Transition boundary from metallic to gaseous phase in Pd break arc, in Proc. 35th IEEE Holm Conf. Electrical Contacts, 1989, pp.191-199.
74. H. Sone, M. Nahai and T. Takagi, Automatic measurement of critical point and features of breaking arc voltage in Ag contacts, Trans. IEICE, E70, (11), 1987, pp.1051-1058.
75. N. B. Jemaa, L. Nedelec and S. Benhenda, Anode and cathode erosion of Ag, Ag alloys and Ag-MeO contact materials in energy range below 10 joules, in Proc. 42th IEEE Holm Conf. Electrical Contacts, 1996, pp.70-74.
76. A. S. Zingerman and D. A. Kaplan, Electric erosion of an anode as a function of interelectrode distance, Soviet Physics-Technical Physics, no. 3, 1959, pp.361-367.
77. E. W. Gray, J. R. Pharney and J. A. Augis, Cathodic contact erosion due to short-duration gas breakdown arcs, J. Phys. D: Appl. Phys., vol. 5, 1972, pp.1068-1076.
78. C. T. Dervos and J. M. Michaelides, The effect of contact capacitance on current-voltage characteristics of stationary metal cotacts, in Proc. 43th IEEE Holm Conf. Electrical Contacts, 1997, pp.152-164.
79. H. Fang, J. Jiang and R. Mou, The study of the relationship between arc duration and arc energy of relay and microswitch contacts, in Proc. 38th IEEE Holm Conf. Electrical Contacts, 1992, pp.167-172.
80. N. B. Jemaa, L. Morin, L. Lchfaoui. And L. Nedelec, Effect of parameters on the transition from anodic to cathodic arc, Proc. Intl. Conf. on Electrical contacts,Electromechanical Components and their Applications, 1999, pp.173-179.
81. K. Sawa and M. Hasegawa, Recent researches and new trends of electrical contacts, IEICE Trans. Electron., E83-C, (9), 2000, pp.1363-1376.
82. J. Swingler and J. W. McBride, Modelling of energy transport in arcing electrical contacts to determine mass transfer, in Proc. 42th IEEE Holm Conf. Electrical Contacts, 1996, pp.105-114.
83. B. Gengenbach, R. Michal, and G. Horn, Erosion characteristics of silver-based contact materials in a DC contactor, IEEE Trans. on Components, Hybrids, and Manufact. Technol., vol. CHMT-8, no. 1, 1985, pp.64-69.
84. P. C. Wingert and C. H. Leung, Comparision of the inherent arc erosion behaviors of silver-cadmium oxide and silver-tin oxide contact materials, IEEE Trans. on Components, Hybrids, and Manufact. Technol., vol. CHMT-10, no. 1, 1987, pp.56-62.
85. Rong Mingzhe and Wang Qiping, Effect of additives on the AgSnO2 contacts erosion behavior, in Proc. 39th IEEE Holm Conf. Electrical Contacts, 1993, pp.33-36.
86. D. Jeannot, . Pinard, P. Ramoni, and E. M. Jost, Physical and chemical properties of metal oxide additions to Ag-SnO2 contact materials and predictions of electrical performance, IEEE Trans. on Components, Hybrids, and Manufacturing Technology-Part A, vol.17, no. 1, 1994, pp.17-23.
87. V. Behrens, T. Honig, A. Kraus, R. Michal, K. Saeger, R. Schmidberger, and T. Staneff, An advanced silver/tin oxide contact material, IEEE Trans. on Components, Hybrids, and Manufacturing Technology-Part A, vol.17, no. 1, 1994, pp.24-31.
88. F. Hauner, D. Jeannot, K. McNeilly, and J. Pinard, Advanced AgSnO2 contact materials for the replacement of AgCdO in high current contactors, in Proc. 46th IEEE Holm Conf. Electrical Contacts, 2000, pp.225-230.
89. J. Wang, M. Wen, B. Wang, and J. Lu, Study on a new contact material-Ag/SnO2-La2O3-Bi2O3, in Proc. 47th IEEE Holm Conf. Electrical Contacts, 2001, pp.94-97.
90. D. J. Cotter, A computerized instrument to evaluate the welding characteristics of contact materials, in Proc. 30th IEEE Holm Conf. Electrical Contacts, 1984, pp.539-542.
91. E. Walczuk and D. Boczkowski, Computer controlled investigations of the dynamic welding behavior of contact materials, in Proc. 42th IEEE Holm Conf. Electrical Contacts, 1996, pp. 11-16.
92. Roland Michal and Karl E. Saeger, Metallurgical aspects of silver-based contact materials for air-break switching devices for power engineering, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 12, no. 1, 1989, pp. 71-81.
93. J. W. McBride and S. M. A. Sharkh, The effect of contact opening velocity and the moment of contact opening on the AC erosion of Ag/CdO contact, IEEE Trans. Components, Hybrids, and Manufact. Technol.,-Part A, vol. 17, no. 1, 1994, pp. 2-7.
94. N. B. Jemaa, L. Nedelec, and S. Benhenda, Break arc duration and contact erosion in automotive application, IEEE Trans. Components, Hybrids, and Manufact. Technol.,-Part A, vol. 19, no. 1, 1996, pp. 82-86.
95. J. Swingler and J. W. McBride, The erosion and arc characteristics of Ag/CdO and Ag/SnO2 contact materials under DC break conditions, IEEE Trans. Components, Packaging, and Manufact. Technol.-Part A, vol. 19, no. 3, 1996, pp.404-415.
96. Y. S. Shen, L. J. Gould, and S. Swann, DTA and TGA studies of four Ag-MeO electrical contact materials, IEEE Trans. Components, Hybrids, and Manufact.Technol., vol. CHMT-8, no. 3, 1985, pp. 352-358.
97. H. C. Furtado and V. L. A. da Silveira, Metallurgical study of Ag-Cd and Ag-CdO alloy electrical contacts, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 11, no. 1, 1988, pp. 68-73.
98. J. Ambier, C. Bourda, D. Jeannot, J. Pinard, and P. Ramoni, modification in the microstructure of materials with air-break switching at high currents, IEEE Trans. Components, Hybrids, and Manufact. Technol., vol. 14, no. 1, 1991, pp. 153-161.
99. L. Zhenbiao, C. Lichun, and Z. Jiyan, The metallurgical research on contact surface deterioration of AgNi, AgW, AgFe, AgCu contact materials, in Proc. 41th IEEE Holm Conf. Electrical Contacts, 1995, pp. 346-349.
100.L. Zhenbiao, C. Lichun,, and Z. Guansheng, A review on theoretical investigation of electrical contact materials, in Proc. 42th IEEE Holm Conf. Electrical Contacts, 1996, pp. 488-493.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code