Responsive image
博碩士論文 etd-0725105-111053 詳細資訊
Title page for etd-0725105-111053
論文名稱
Title
室溫濺鍍氧化鋅薄膜之發光特性研究
The Luminescence Properties of ZnO Thin Films Prepared by Room Temperature Sputtering Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-24
繳交日期
Date of Submission
2005-07-25
關鍵字
Keywords
射頻磁控濺鍍、光激發光、薄膜電致發光、氧化鋅
Thin Films Electroluminescence Device, ZnO, Photoluminescence, RF Sputter
統計
Statistics
本論文已被瀏覽 5711 次,被下載 7949
The thesis/dissertation has been browsed 5711 times, has been downloaded 7949 times.
中文摘要
本論文利用反應性射頻磁控濺鍍法在室溫下於SiO2/Si
基板上製備氧化鋅(ZnO)薄膜, 並藉由熱退火處理來改善其
發光特性。在薄膜物性研究方面, 藉由SEM 及XRD 分析,
探討氧化鋅薄膜於不同熱退火處理後微結構之變化,並利用
化學分析電子光譜儀(ESCA)分析薄膜化學組態。在光學性質
方面, 藉由光致螢光光譜儀(PL), 分析在不同熱退火條件處
理後所得薄膜之光激發光特性。
由實驗結果得知,在不同熱退火處理後薄膜內部化學組
態有不同的變化;氧化鋅薄膜的光激發光特性會受到薄膜內
部化學組態影響而得到不同波段之特性發光。在空氣900℃
下退火, 薄膜內部氧空缺比例最高, 其綠光特性最佳,而在
氧氣900℃ 下退火其O-Zn 鍵結比例最高,薄膜的紫外光特性
為最佳。
Abstract
In this study, the reactive rf magnetron sputtering was used to deposit zinc oxide (ZnO) thin films on SiO2/Si substrate at room temperature. The thermal treatment procedure was carried out to improve the luminescence characteristics of ZnO thin films. The physical characteristics of ZnO thin films with different post
annealing process were obtained by the analyses of XRD and SEM. The electron spectroscopy for chemical analysis (ESCA) was used to analyze the chemical states of ZnO thin films. In optical properties, the photoluminescence spectrometer was used to measure the photoluminescence characteristics (PL).
According to the results of experiments, the chemical states of ZnO thin films were changed after different post annealing. The photoluminescence characteristics were obtained at different wavelength, and the results indicated that they were affected by the chemical states of ZnO thin films. With 900℃ annealing, the strongest green emission and UV emission intensity can be obtained under the air ambient and the oxygen ambient, respectively. The reason was due to the variation of the proportion of oxygen vacancies and O-Zn bond within the ZnO thin films.
目次 Table of Contents
摘要............................................................................ Ⅰ
目............................................................................ Ⅲ
圖表目錄.................................................................... Ⅵ
第一章 前言.............................................................. 1
第二章 理論分析....................................................... 6
2.1 電致發光元件..................................................................... 6
2.1-1 電致發光元件之結構與動作原理............................ 7
2.1-2 雙絕緣層EL 元件結構與各層材料的需求.............. 8
2.2 發光.................................................................................... 11
2.2-1 發光之簡介.............................................................. 11
2.2-2 發光中心之種類與原理........................................... 13
2.3 螢光材料............................................................................. 14
2.3-1 螢光材料之簡介....................................................... 14
2.3-2 螢光材料的種類與應用........................................... 15
2.4 氧化鋅薄膜......................................................................... 18
2.4-1 氧化鋅之簡介.......................................................... 18
2.4-2 氧化鋅薄膜的發光機制........................................... 19
2.4-3 氧化鋅薄膜的光學性質........................................... 22
2.5 薄膜沈積原理..................................................................... 22
2.5-1 沈積現象.................................................................. 22
2.5-2 薄膜表面及截面結構............................................... 23
2.6 反應性射頻磁控濺鍍原理.................................................. 23
2.6-1 直流輝光放電.......................................................... 24
2.6-2 磁控濺射.................................................................. 24
2.6-3 射頻濺射.................................................................. 25
2.6-4 反應性濺射.............................................................. 25
第三章 實驗.............................................................. 27
3.1 薄膜的製作......................................................................... 27
3.1-1 基板的清洗步驟....................................................... 27
3.1-2 濺鍍系統與薄膜沈積............................................... 28
3.2 熱處理製程......................................................................... 29
3.3 薄膜特性分析..................................................................... 29
3.3-1 X 光繞射(X-Ray Diffraction, XRD)分析................... 29
3.3-2 掃描式電子顯微鏡(Scanning Electron Microscopy,
SEM)分析................................................................. 30
3.3-3 原子力顯微鏡(Atomic Force Microscopy, AFM)分析
.................................................................................. 30
3.3-4 化學分析電子光譜儀(Electron Spectroscopy for
Chemical Analysis,ESCA)分析............................... 31
3.3-5 光致螢光光譜儀(Photoluminescence Spectrometer,
PL)分析.................................................................... 31
第四章 結果與討論................................................... 33
4.1 室溫沈積之氧化鋅薄膜...................................................... 33
4.1-1 沈積速率.................................................................. 33
4.1-2 薄膜表面結構與粗糙度........................................... 34
4.1-3 薄膜結晶性分析....................................................... 34
4.1-4 PL 量測.................................................................. 35
4.2 不同溫度熱退火處理之影響.............................................. 36
4.2-1 薄膜表面結構與粗糙度........................................... 36
4.2-2 薄膜結晶性分析....................................................... 37
4.2-3 薄膜化學組態分析................................................... 38
4.2-4 PL 量測.................................................................. 39
4.3 不同氣氛熱退火處理之影響.............................................. 40
4.3-1 薄膜表面結構.......................................................... 41
4.3-2 薄膜結晶性分析....................................................... 41
4.3-3 薄膜化學組態分析................................................... 42
4.3-4 PL 量測.................................................................. 42
4.4 不同持溫時間熱退火處理之影響....................................... 43
4.4-1 薄膜表面結構.......................................................... 43
4.4-2 薄膜結晶性分析....................................................... 43
4.4-3 PL 量測.................................................................. 44
第五章 結論.............................................................. 45
參考文獻.................................................................... 46
圖表目錄
圖1-1 平面顯示器種類.............................................................. 53
圖1-2 EL 元件的種類及特性..................................................... 54
圖2-1 薄膜型EL 元件的基本構造圖......................................... 55
圖2-2 EL 元件的發光原理......................................................... 55
圖2-3 EL 元件加偏壓時電子撞擊激發之能帶圖....................... 56
圖2-4 雙絕緣層EL 元件之等效電路......................................... 56
圖2-5 以矽做為基板之EL 元件................................................ 57
圖2-6 由紫外光區至紅外光區的電磁光譜................................ 57
圖2-7 激發能在發光材料中的吸收與轉換................................ 58
圖2-8 氧化鋅(ZnO)結構............................................................. 58
圖2-9 在固定壓力350mtorr 下,以脈衝雷射沉積在兩種不同基
板上的ZnO 所量測到的PL 光譜,(a) (001)之sapphire,
(b) (100)之p-type 的Si.................................................... 59
圖2-10 自由載子濃度、氧空缺及綠光PL 隨著不同退火溫度的
變化情形.......................................................................... 60
圖2-11 E. G. Bylandern 所提出氧化鋅之缺陷能階圖................. 61
圖2-12 B. Lin 所提出氧化鋅之缺陷能階圖................................ 61
圖2-13 薄膜沈積步驟,(a)成核、(b)晶粒成長、(c)晶粒聚結、(d)
縫道填補、(e)薄膜的沉積............................................... 62
圖2-14 濺鍍參數對沈積薄膜之影響............................................ 62
圖2-15 直流輝光放電結構與電位分佈圖.................................... 63
圖2-16 平面型圓形磁控之結構圖............................................... 64
圖2-17 平面磁控結構及電子運動路徑........................................ 64
圖2-18 反應性濺射之模型........................................................... 65
圖3-1 射頻磁控濺鍍系統構造圖............................................... 66
圖3-2 射頻磁控濺鍍系統操作之流程圖.................................... 67
圖3-3 光致螢光光譜實驗系統................................................... 68
圖4-1 室溫下沈積氧化鋅一小時之SEM 剖面圖....................... 69
圖4-2 室溫下沈積氧化鋅一小時之SEM 表面圖....................... 69
圖4-3 室溫下沈積氧化鋅薄膜之AFM 之3D 圖....................... 70
圖4-4 室溫下沈積氧化鋅薄膜之XRD 圖.................................. 70
圖4-5 室溫下沈積氧化鋅薄膜之PL 圖..................................... 71
圖4-6 不同溫度(200~500℃)空氣熱退火處理後之氧化鋅薄膜
之SEM 表面圖................................................................ 72
圖4-7 不同溫度(600~900℃)空氣熱退火處理後之氧化鋅薄膜
之SEM 表面圖................................................................ 73
圖4-8 不同溫度(600~900℃)空氣熱退火處理後氧化鋅薄膜之
AFM 量測之3D 圖.......................................................... 74
圖4-9 不同溫度(RT~500℃)空氣熱退火處理後氧化鋅薄膜之
XRD 圖............................................................................ 75
圖4-10 不同溫度(600~900℃)空氣熱退火處理後氧化鋅薄膜之
XRD 圖............................................................................ 76
圖4-11 不同溫度(200~900℃)空氣熱退火處理後氧化鋅薄膜之
XRD-ZnO(002)繞射峰強度統計圖................................... 77
圖4-12 氧化鋅薄膜經RTA600℃空氣退火後之ESCA 分析的
Survey 圖......................................................................... 77
圖4-13 氧化鋅薄膜經RTA600℃空氣退火處理後之ESCA 分析
的Multiplex 圖................................................................ 78
圖4-14 氧化鋅薄膜經RTA600℃空氣退火後之ESCA 分析的
Multiplex 圖使用Gaussian fit 後的O 1s peak 結果........ 78
圖4-15 不同溫度(600℃~900℃)空氣熱退火處理的氧化鋅薄膜其
O 1s 的相對面積關係圖.................................................. 79
圖4-16 不同溫度(RT~500℃)空氣熱退火處理後氧化鋅薄膜之PL
圖..................................................................................... 80
圖4-17 不同溫度(600~900℃)空氣熱退火處理後氧化鋅薄膜之
PL 圖............................................................................... 81
圖4-18 不同氣氛900℃熱退火處理後氧化鋅薄膜之SEM 圖.... 82
圖4-19 不同溫度(600~900℃)氧氣氛熱退火處理後氧化鋅薄膜
之SEM 表面圖................................................................ 83
圖4-20 不同溫度(600~900℃)真空氣氛熱退火處理後氧化鋅薄
膜之SEM 表面圖............................................................ 84
圖4-21 不同氣氛900℃熱退火處理後氧化鋅薄膜之XRD 圖..... 85
圖4-22 不同氣氛900℃熱退火處理後氧化鋅薄膜O 1s 的相對面
積關係圖.......................................................................... 86
圖4-23 不同氣氛900℃熱退火處理後氧化鋅薄膜之PL 圖........ 87
圖4-24 不同持溫時間(15-90mins)空氣氣氛熱退火處理後氧化鋅
薄膜之SEM 表面圖......................................................... 88
圖4-25 不同持溫時間(15-90mins)空氣氣氛熱退火處理後氧化鋅
薄膜之XRD 圖................................................................ 89
圖4-26 不同持溫時間(15-90mins)空氣氣氛熱退火處理後氧化鋅
薄膜之PL 圖................................................................... 90
表一 交流電薄膜電致發光元件之優缺點(ACTFEL).................. 91
表二 低電壓彩色螢光粉的特性.................................................. 91
表三 二六族化合半導體能隙表.................................................. 92
表四 氧化鋅(ZnO)基本特性表................................................... 93
表五 反應性射頻濺鍍系統沈積ZnO 薄膜之系統參數.............. 94
表六 氧化鋅(ZnO)的JCPDS Data............................................... 95
表七 鋅(Zn)的JCPDS Data ......................................................... 95
參考文獻 References
[1] 林高照、陳國基、鄭晃忠,“場發射顯示器技術介紹”,電
子月刊,2002 年8 月,頁134-144。
[2] Yoshimasa A.Ono, “Electroluminescent displays: Chap. 5
Materials Requirements”, (1995) 61-69, 121-139.
[3] 鄧朝勇、王永生、楊勝,” 新材料月刊”,2002 年九月。
[4] W. A.Barrow, R. C. Cooyert, C. N. King, SID’84 Digest
(1984) 249.W
[5] W. A. Barrow, R. C. Coovert, E Dickey, C. N. King, C.
Laakso, S. S. Sun, R. T. Tuenge, R. Wentross, J Kane,
SID’93 Digest (1993) 761.
[6] S. S. Sun,“ A new blue emitting TFEL phosphor: SrS:Cu”, Display 19 (1999) 145.
[7] B. Andress, Z. Phys. 170 (1962) 1.
[8] J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang and D. Liu,
“Luminescence properties of ZnO films annealed in growth
ambient and oxygen”, J. Crystal Growth, 263 (2004)
269-272.
[9] K. H. Yoon and J. Y. Cho, “Photoluminescence
characteristics of zinc oxide thin films prepared by spray
pyrolysis technique,” Mater. Res. Bull., vol. 35, pp. 39-46, 2000.
[10] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402, pp. 302-306, 2002.
[11] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi 47 and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” J. Crystal Growth, vol. 243, pp. 151-156, 2002.
[12] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam
evaporation,” Appl. Surf. Sci., vol. 142, pp. 233-236, 1999.
[13] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films,” Mater. Lett., vol. 75, pp. 4655-4659, 2003.
[14] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Lett., vol. 55, pp. 67-72, 2002.
[15] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si,” Opt. Mater., vol. 17, pp. 327-330, 2001.
[16] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng, “Evolution of visible luminescence in ZnO by thermal oxidation of zinc films,” Chem. Phys. Lett., vol. 375, pp. 113-118, 2003.
[17] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S.
Fujita, “Effects of oxygen plasma condition on MBE growth
of ZnO,” J. Crystal Growth, vol. 209, pp. 522-525, 2000.
[18] D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells,” Thin Solid films, vol. 354, pp. 227-231, 1999. 48
[19] T. Inoguchi, M. Takede, Y. Kakihara, Y. Nakata and M.
Yoshida, Digest of 1974 SID International Symposium,
(1974) 84.
[20] 趙中興,田志豪(編譯),“顯示器原理與技術”,全華科技
圖書股份有限公司,1998 年11 月。
[21] Y. A. Ono, in Encyclopedia of Applied Physics, Vol. 5, ed. G. L. Trigg (VCH Publishers, Inc., American Institute of Physics, Weinheim and New Youk, 1993) p.295.
[22] 蔡淑卿,“ZnO 與ZnS 摻錳螢光薄膜之發光性質研究”,國
立成功大學材料科學及工程研究所碩士論文,(2004)。
[23] W. Tang, D. C. Cameron, “Electroluminescent zinc sulphide devices produced by sol-gel processing”, Thin Solid Films 280, (1996) 221-226.
[24] 施敏(原著),黃調元(譯),“半導體元件物理與製作技術”,
國立交通大學出版社,2002 年9 月。
[25] 黃渝晨,“硫化鋅共摻雜銅、錳之發光特性研究”,逢甲大
學化學工程學系碩士論文,(2003)。
[26] 楊素華,“場放射顯示器之螢光技術”,Displays,2003 年
八月。
[27] S. Y. Chu, W. Water and J. T. Liaw, “Influence of
postdeposition annealing on the properties of ZnO films
prepared by RF magnetron sputtering,” J. Eur. Cera. Soc.,
vol. 23, pp. 1593-1598, 2003.
[28] 水瑞鐏,“氧化鋅薄膜特性及其在通訊元件與液體感測器
上之應用”,國立成功大學電機工程學系博士論文,(2002)。
[29] P. Nunes, D. Costa, E. Fortunato and R. Martins,
“Performances presented by zinc oxide thin films deposited
49 by r.f. magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[30] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B.
Ucer and R. T. Williams, “Production and properties of p-n
junctions in reactively sputtered ZnO,” Physica B, vol.
308-310, pp. 1197-1200, 2001.
[31] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering,” Thin Solid Films, vol. 199, pp.
223-230, 1991.
[32] M.T. Young and S.D. Keun, “Effects of rapid thermal
annealing on the morphology and electrical properties of
ZnO/In Films,” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[33] 王敬龍,“以溶膠-凝膠法製備ITO 薄膜之製程研究”,國
立成功大學材料科學及工程研究所碩士論文,(1996) 。
[34] 許國銓,“科技玻璃-高性能透明導電膜玻璃”,材料與社
會,1993 年,84 期。
[35] C. C. Lin, C. S. Hsiao, S. Y. Chen and S. Y. Cheng,
“Ultraviolet emission in ZnO films controlled by point
defects,” J. Electrochem. Soc., vol. 151(5), pp. G282-G288, 2004.
[36] Z. Fang, Y. Wang, X. Peng, X. Liu and C. Zhen, “Structural and optical properties of ZnO films grown on the AAO templates,” Mater. Lett., vol. 57, pp. 4187-4190, 2003.
[37] 甘炯耀,“ZnO 之薄膜製備與發光性質研究”,國立清華大
學材料科學工程學系碩士論文,(2001)。
[38] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim and S. Y. Lee, “Variation of light emitting properties of ZnO thin films 50 depending on post-annealing temperature,” Mater. Sci. Eng. B, vol. 102, pp. 313-316, 2003.
[39] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions,” J. Electrochem. Soc., vol. 148(3), pp. G110-G113, 2001.
[40] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition,” Appl. Surf. Sci., vol. 168, pp. 332-334, 2000.
[41] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photo
luminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79(10), pp. 7983-7990, 1996.
[42] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing,” Nucl. Instr. and Meth. B, vol. 169, pp. 59-63, 2000.
[43] E. G. Bylander, “Surface effects on the low-energy
cathodoluminescence of zinc oxide,” J. Appl. Phys., vol.
49(3), pp. 1188-1195, 1978.
[44] 林素霞,“氧化鋅薄膜的特性改良及應用之研究”,國立成
功大學材料科學及工程研究所博士論文,(2003)。
[45] E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev., vol. 93, pp. 632-633, 1954.
[46] T. S. Moss, ”The interpretation of the properties of Indium Antimonide,” Phys. Soc. London Sect. B, vol. 67 ,pp. 775-782, 1954. 51
[47] 莊達人,“VLSI 製造技術”,高立圖書股份有限公司,1995
年。
[48] J. A. Thornton, “Influence of apparatus geometry and
deposition conditions on the structure and topography of
thick sputtered coatings,” J. Vac. Sci. Technol., vol. 11, pp. 666-698, 1974.
[49] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film
Technology,” 1980, pp.201.
[50] F. Shinoki and A. Itoh, “Mechanism of rf reactive
sputtering,” J. Appl. Phys., vol. 46, pp. 3381, 1975.
[51] H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, “2.7.3 ZnO sputtering”, Semiconducting Transparent Thin Films, Institute of Physics Publishing Bristol and Philadelphoa, 116-122.
[52] Kiyotaka Wasa and Shigeru Hayakawa, “Handbook of sputter deposition technology : Chap 5 Deposition of Compound thin films”, Noyes, U.S.A. (1992) 123-146.
[53] E. M. Bachari, G. Baud, S. Ben Amor and M. Jacquet,
“Structural and optical properties of sputtered ZnO films”, Thin Solid Films, vol. 348, pp. 165, 1999.
[54] M. Chen et al., “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films” Applied Surface Science, 158 (2000) 134-140.
[55] S. H. Jeong, J. H Boo, “Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering Thin Solid Films”, 447-448 (2004)
105-110.
[56] Donald R. Askeland(原著),蔡丕椿、蔡明雄、陳文照、廖
52 金喜(編譯),“材料科學與工程”, 全華科技圖書股份有限
公司,第三版。
[57] Y. G. Wang, S. P. Lau, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air”, J. Appl. Phys. vol. 94, pp. 354-358, 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code