Responsive image
博碩士論文 etd-0725105-165916 詳細資訊
Title page for etd-0725105-165916
論文名稱
Title
偏心式超精密球研磨加工機之球研磨特性研究
Studies on the Grinding Characteristics of Ball by Using Eccentric Ultra-Precision Ball Grinding Machine
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-16
繳交日期
Date of Submission
2005-07-25
關鍵字
Keywords
真球度、偏心量、表面粗度
sphericity, eccentricity, surface roughness
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
摘要
因精密陶瓷滾珠軸承具有耐高溫、耐腐蝕及耐磨耗等良好性質,已廣泛被應用於精密機械。現今,陶瓷球的生產費用為鋼珠的數百倍,其原因為加工過程需耗費大量的時間與金錢。本研究使用實驗室所開發之偏心式超精密球研磨加工機,探討偏心量(e:球公轉中心與驅動軸中心之距離)、主軸轉速、加工負荷等等加工條件對球研磨特性之影響,進而以解省時間與成本的條件下,來尋找此加工機之最佳加工條件,以利往後針對產業界大量生產之需求。
實驗結果發現,隨著偏心量(eccentricity)的增加,真球度(sphericity)改善速率增加。當真球度下降至一定的值而不再有所變動稱之為真球度飽和值,其飽和值不完全與偏心量成一正比關係。偏心量與真球度飽和值之關係以一個球半徑(rb)為區分點,分為兩個區域,當偏心量為0~rb成一正比關係, rb~2rb則成反比關係。且當偏心量增加時,表面粗度Ra的下降速率也會增加,其飽和值也較高。移除率則隨著偏心量的增加而增加。
當主軸轉速與研磨負荷增加時,真球度與表面粗度都會較快速收斂至一飽和值,但其值較高,且移除率也會隨之增加。
Abstract
ABSTRACT
The ceramic ball bearing has been used to exact machine for its good properties such as heat-resistant, corrosion-resisting, and wear-resisting. Now, the produced expense of ceramic ball is hundred of steel ball because the grinding process must spend much time and money. This study research the effects of eccentricity (e: the distance is between the center of the ball circulation and the center of the spindle), spindle speed, and load on grinding characteristics of ball by using eccentric ultra-precision ball grinding machine which developed by our lab, under saving cost and time, search the optimum operating conditions of this machine, it’s good for industrial circles in the future.
Experimental results show that the converged rate of the saturated value for the sphericity is increased with increasing eccentricity. Saturated value of sphericity is sphericity reduced to a steady state. The saturated value of the sphericity is not fully proportional to eccentricity. The relation between eccentricity and saturated value of sphericity are divided two region by one rb, the first region is that sphericity is proportional to eccentricity when eccentricity is 0~rb, and the second region is that sphericity is inverse proportional to eccentricity when eccentricity is rb~2rb. The converged rate of surface roughness (Ra) are negative with increasing eccentricity and the saturated value of the surface roughness (Ra) is higher. The volume removal rate is increased with increasing eccentricity.
The converged rate of the saturated value for the sphericity and surface roughness (Ra) are increased with increasing spindle speed and load, and the saturated value are higher. The volume removal rate is also increased with increasing spindle speed and load.
目次 Table of Contents
總 目 錄
頁次
封面……................................................................................................I
論文審定書………………………………………………………...…II
謝誌………………………………………………………………III
總目錄.................................................................................................IV
圖目錄................................................................................................VI
表目錄...............................................................................................X
中文摘要............................................................................................ XI
英文摘要........................................................................................... XII
第一章 緒論.......................................................................................1
1-1 研究動機..............................................................................1
1-2 研究背景..............................................................................2
1-2-1 傳統研磨......................................................................3
1-2-2 先進研磨......................................................................4
1-2-3 偏心研磨......................................................................6
1-3 本文重點..............................................................................7
1-4 本論文架構..........................................................................7
第二章 加工基本原理與加工機設計理念..................................9
2-1 球研磨加工方法介紹........................................................12
2-1-1 球原料之球型化過程…............................................12
2-1-2 磨盤與研磨劑……....................................................13
2-1-3 傳統盤磨式加工機之相關實驗結論........................15
2-1-4 磁性流體之相關實驗結論........................................16
2-2 研磨加工機制…................................................................20
2-2-1 研磨(Grinding)………...............................................20
2-2-2 拋光(Polishing)……..............................................20
2-3 球研磨機之設計理念.......................................................21
2-3-1 高精密度……………………………........................21
2-3-2 高加工速率………………..……….........................22
2-3-3 量產需求………………..………….........................23
第三章 實驗設備及實驗方法.........................................................29
3-1 實驗設備及量測儀器…....................................................29
3-1-1 偏心式超精密球研磨加工機....................................29
3-1-2 量測儀器....................................................................30
3-2 實驗條件............................................................................31
3-3 加工方法............................................................................33
3-4 實驗步驟............................................................................33
第四章 實驗結果……………........................................................41
4-1 各種研磨參數對鋼球研磨特性之影響............................41
4-1-1 偏心量與主軸轉速對鋼球研磨特性之影響............41
4-1-2 研磨負荷對鋼球研磨特性之影響…........................56
4-2 各種研磨參數對陶瓷球研磨特性之影響.......................70
4-2-1 偏心量與主軸轉速對陶瓷球研磨特性之影響........70
第五章 討論...................................................................................84
5-1 各種研磨參數對球研磨影響之原因............................84
5-2 移除量與真球度及表面粗度Ra之關係...........................87
5-3 鋼球與陶瓷球研磨前後表面SEM圖............................91
第六章 結論...................................................................................94
參考文獻...........................................................................................95
圖 目 錄
頁次
圖1-1 傳統磨盤式球研磨法..............................................................9
圖1-2 浮板式磁性流體研磨法..........................................................9
圖1-3 彈簧施力浮板式研磨法..........................................................9
圖1-4 迴轉控制式球研磨法..............................................................9
圖1-5 組合式的導槽法......................................................................9
圖1-6 磁性研磨法............................................................................10
圖1-7 磁性流體偏心研磨法............................................................10
圖1-8 磁性流體之磨盤式偏心研磨法............................................10
圖1-9 研究程序圖…………………………………………………11
圖2-1 鋼球加工流程圖………........................................................26
圖2-2 橫式鋼球粗磨加工機構示意圖............................................26
圖2-3 基礎研究型球研磨加工機構示意圖....................................27
圖2-4 陶瓷在磨削時產生脆性破壞型切屑與連續型切屑之模式(a) 脆性破壞型切屑之生成(b) 連續型切屑之生成………27
圖2-5 拋光加工機制的模式圖…....................................................28
圖2-6 真球度瓶頸現象示意圖........................................................28
圖3-1 偏心式超精密球研磨加工機示意圖………………………37
圖3-2 偏心式超精密球研磨加工機實體圖………………………38
圖3-3 實驗程序圖…………………………………………………39
圖4-1 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,真球度與研磨時間之關係............................45
圖4-2 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,真球度與研磨時間之關係...........................46
圖4-3 研磨負荷為0.2N/ball,在不同轉速之情況下,真球度飽和值與偏心量之關......................................................47
圖4-4 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,表面粗度Ra與研磨時間之關係..............48
圖4-5 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,表面粗度Ra與研磨時間之關係...................49
圖4-6 研磨負荷為0.2N/ball,在不同轉速之情況下,表面粗度Ra飽和值與偏心量之關係……………………..…......50
圖4-7 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,平均直徑與研磨時間之關係...................51
圖4-8 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,平均直徑與研磨時間之關係..................52
圖4-9 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,移除率與研磨時間之關係...................53
圖4-10 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,移除率與研磨時間之關係.......................54
圖4-11 研磨負荷為0.2N/ball,不同轉速之情況下,移除率與偏心量之關係…………………………………………………55
圖4-12 主軸轉速150rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,真球度與研磨時間之關係..................59
圖4-13 主軸轉速600rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,真球度與研磨時間之關係.......................60
圖4-14 研磨負荷為0.2N/ball、3.8N/ball,在不同轉速之情況下,真球度飽和值與偏心量之關係....................................61
圖4-15 主軸轉速150rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,表面粗度Ra與研磨時間之關係.........62
圖4-16 主軸轉速600rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,表面粗度Ra與研磨時間之關係................63
圖4-17 研磨負荷為0.2N/ball、3.8N/ball,在不同轉速之情況下,表面粗度Ra飽和值與偏心量之關係..............................64
圖4-18 主軸轉速150rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,平均直徑與研磨時間之關係....................65
圖4-19 主軸轉速600rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,平均直徑與研磨時間之關係...............66
圖4-20 主軸轉速150rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,移除率與研磨時間之關係....................67
圖4-21 主軸轉速600rpm,研磨負荷3.8N/ball,偏心量為0、rb、2rb之情況下,移除率與研磨時間之關係....................68
圖4-22 研磨負荷為0.2N/ball、3.8N/ball,在不同轉速之情況下,移除率與偏心量之關........................................................69
圖4-23 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,真球度與研磨時間之關係.....................73
圖4-24 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,真球度與研磨時間之關係.........................74
圖4-25 研磨負荷為0.2N/ball,在不同轉速之情況 下,真球度飽和值與偏心量之關...........................................75
圖4-26 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,表面粗度Ra與研磨時間之關係................76
圖4-27 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,表面粗度Ra與研磨時間之關係.................77
圖4-28 研磨負荷為0.2N/ball,在不同轉速之情況 下,表面粗度Ra飽和值與偏心量之關係…………………………......78
圖4-29 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,平均直徑與研磨時間之關係.....................79
圖4-30 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,平均直徑與研磨時間之關係....................80
圖4-31 主軸轉速150rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,移除率與研磨時間之關係.......................81
圖4-32 主軸轉速600rpm,研磨負荷0.2N/ball,偏心量為0、rb、2rb之情況下,移除率與研磨時間之關係....................82
圖4-33 研磨負荷為0.2N/ball,不同轉速之情況下,移除率與偏心量之關係………………………………..…………………83
圖5-1 在不同偏心量下,真球度飽和值與體積移除率之關係...89
圖5-2 在不同偏心量下,表面粗度Ra飽和值與體積移除率之關係……….……………………………………………91
圖5-3 (a)未研磨前鋼球表面SEM圖,(b)與(c)分別為e=0與e=2rb,研磨負荷0.2N/ball,主軸轉速150rpm,經6hr與2hr研磨過後鋼球表面之SEM圖………………………92
圖5-4 (a)未研磨前陶瓷球表面SEM圖,(b)e=0,研磨負荷0.2N/ball,主軸轉速150rpm,經6hr研磨過後陶瓷球表面之SEM圖…………………………………………………93




表 目 錄
頁次

表3-1 磨粒之性質…………………………………………………40
表3-2 球之材料性質........................................................................40
表3-3 實驗條件................................................................................40
參考文獻 References
參考文獻

[1] 稻垣耕司, 阿部紀一, ”Evaluation of performance of minute sphere grinders prepared for trial”, 東北大學科學計測研究所報告, 第25卷, 1976, No.1, 49-65.
[2] 井戶守,羽地務,”тЯヤХшヤ玉軸受”, 日刊工業新聞社, 1961.
[3] 糸魚川文廣, 中村隆, 船橋鉀一, ”V溝ьЧкメ用ゆギ鋼球ььЧз⑦ヲソ構”, 日本機械學會論文集(C編), 第59卷, 1993, No.1, 304-310.
[4] 梅原德次, 加藤康司, ”A study on mangetic fluid grinding – 1st report”,Trans . JSME, Vol 54, 1998, 1599-1604 (日文).
[5] N. Umehara and K. Kato, ”Principles of magnetic fluid grinding of ceramic balls”, Applied Electromagnetics in Materials, vol.1, 1990, 37-43.
[6] 加藤康司, 張波, 梅原德次, T. H. C. Childs, D. A. Jones, S. Mahmood, ”Kinematics of balls in magnetic fluid grinding “ 日本機械學會論文集(C編), 第60卷, 1994, No.572, 1433-1439.
[7] 梅原德次, 加藤康司, 竹腰正雄, ”ЙьтЧヱ球ソ磁性流體研磨之基本特性ズ及了ニエ浮子ソ支持剛性シ加工荷重ソ影響”, 日本機械學會論文集(C編), 第61卷, 1995, No.584, 1709-1714.
[8] T. H. C. Childs, S. Mahmood, H. J. Yoon, “magnetic fluid grinding of ceramic balls”, Tribology International, Vol.28, 1995, No.6, 341-348.
[9] T. H. C. Childs, S. Mahmood, H. J. Yoon, “The material removal mechanism in magnetic fluid grinding of ceramic ball bearings,” Journal of Engineering Manufacture, Vol.208, 1994, No.1, 47-59.
[10] T. H. C. Childs, S. Mahmood, H. J. Yoon, “Ceramic ball finishing by magnetic fluid grinding”, Advanced Ceramics for Structural and Tribological Applications, 1995, 377-387.
[11] 梅原德次, ”磁性流體研磨”, Ььユп①ЖЗЬ”, 第41卷, 1996, No.6, 476-481.
[12] Komanduri, Umehara, Raghunandan, “On the possibility of chemo-mechanical action in magnetic float polishing of silicon nitride”,Journal of Tribology, ASME, Vol.118, 1996, 721-727.
[13] Bhagavatula, Komanduri, “On chemomechanical polishing of Si3N4 with Cr2O3 “, Philosophical Magazine A, Vol.74, 1996, No.4, 1003-1017.
[14] F. Y. Chang, T. H. C. Childs, “Non-magnetic fluid grinding”, Wear, Vol.233, 1998, 7-12.
[15] 黑部利次,角田久野,小野田誠,”回轉Зз⑦制御形球研磨法ソ開發,第一報:加工原理シ研磨裝置,第二報:窒化ンユ素球ソьШз⑦ヲ”,日本精密工學會春季學術研討會論文集, 1990, 257-260.
[16] 黑部利次, 角田久野, 小野田誠, ”回轉Зз⑦制御形球研磨法ソ開發, 第三報:窒化ンユ素球ソпベЁ⑦ヲ”, 日本精密工學會秋季學術研討會論文集, 1990, 637-638.
[17] 市川茂樹, 小奈弘, 吉本勇, ”ヤютШヱЗп-юソьШз⑦ヲ”, 日本精密工學會秋季大會學術講演會講演論文集, 1991, 215-216.
[18] 東芝生產技術研究所, ”超精密ЙьтШ③З球ソ研磨法, 定盤メ磁フザ浮上イオ偏荷重メ吸收”, Nikkei mechanical, 1991, 90-91.
[19] B. Zhang, A. Nakajima, ”Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultraprecision bearings and its importance in spherical surface generation”, Precision Engineering, Vol.27, 2003, 1-8.
[20] 陳聖航, ”新超精密球研磨加工機之研磨機制研究”, 國立中山大學機械所碩士論文, 2004.
[21] J. Kang, M. Hadfield, ”A novel eccentric lapping machine for finishing advanced ceramic balls”, Proc Instn Mech Engrs, Vol.27 part B, 2001, 781-795.
[22] 張波, 梅原德次, 加藤康司, ”ЙьтШヱ球ソ磁性流體研磨ソ研究”, 精密工學會誌, Vol.61, 1995, No.4, 586-590.
[23] 張波, 中島晃, ”Si3N4ЙьтШヱ球ソ高能率•超精密研削”, 日本Ььユп口Жみ學會Ььユп口Жみ會議予稿, 1997, 349-351.
[24] JSME Mechanical Engineering Handbook, 7, 1977, 195(In Japanese)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.85.76
論文開放下載的時間是 校外不公開

Your IP address is 52.14.85.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code