Responsive image
博碩士論文 etd-0725105-170403 詳細資訊
Title page for etd-0725105-170403
論文名稱
Title
分子動力學結合磁性理論觀察鈷銅奈米合金之磁性與微結構的變化
Molecular dynamics simulation combined magnetic theory on investigation of the magnetic properties and nano-structural variation of Co-Cu nanoparticle.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-05-24
繳交日期
Date of Submission
2005-07-25
關鍵字
Keywords
鈷銅奈米粒子、量子微擾、分子動力學、退火、磁性、RKKY
RKKY, Co-Cu nanoparticles, annealing, molecular dynamics simulation
統計
Statistics
本論文已被瀏覽 5630 次,被下載 2631
The thesis/dissertation has been browsed 5630 times, has been downloaded 2631 times.
中文摘要
近年來將奈米磁性材料應用在數位磁性儲存裝置是提昇儲存容量的一種新趨勢,其中鈷銅磁性奈米粒子是具有應用潛力的磁性材料之一。因此,若能深入探討鈷銅奈米粒子的材料性質,將能作為未來在數位磁性儲存元件應用與發展的重要參考。本文以鈷銅奈米合金的修正型Tight-Binding勢能,利用分子動力學理論模擬鈷銅奈米粒子在退火過程中的結構變化,藉由徑向分佈函數(RDF)、角度關連函數(ACF)與平均鍵長統計,探討在較高與較低的鈷濃度比例條件下,對其結構排列的影響,並從中求取鈷原子在鈷銅奈米粒子中的分佈函數。本研究再以兩種計算稀釋合金磁性的方法─RKKY間接交互作用理論與量子微擾理論, 與分子動力學計算的鈷原子分佈函數結合,計算鈷銅奈米粒子在不同比例條件下,磁性對應溫度的分佈變化,並預測其居禮溫度。
Abstract
The Co-Cu nanoparticles is one of the magnetic materials that have considerable potential for a variety of industrial applications, including giant magnetoresistance (GMR) digital storage devices and have therefore attracted a great deal of attention in recent years. For this reason, it will be an important reference to the development of the magnetic digital storage devices if we can go deep into study the material properties of the Co-Cu nanoparticles.
This study uses molecular dynamics simulations to investigate the crystalline process of Co-Cu nanoparticles of high and low Co concentrations (5~25 %) during the annealing process. The modified many-body tight binding potential is adopted to accurately model the Cu-Cu, Co-Co, and Co-Cu pair inter-atomic interactions. The structural transformations at the upper and lower melting points are observed by the radial distribution function (RDF), the angle correction function (ACF) and the average bond lengths. finally, we employs molecular dynamics simulations to predict the distribution function of diluted magnetic Co atoms in a Cu host and then uses the the Ruderman-Kittel-Kasuya-Yosida (RKKY) theory and quantum magnetism theory to calculate the magnetic properties of the Co-Cu alloys at different temperature, including their Curie temperature.
目次 Table of Contents
目錄
第1章 緒論 1
1.1 研究動機 2
1.2 文獻回顧 5
1.3 本文架構 9
第2章 分子動力學理論 10
2.1 勢能函數 11
Tight-binding勢能 12
2.2 運動方程 15
2.2.1 Velocity Verlet algorithms 15
2.3 徑向分佈函數 (RADIAL DISTRIBUTION FUNCTION, RDF) 17
2.4 角度關聯函數 (ANGULAR CORRELATION FUNCTION, ACF) 19
2.5 分子動力學數值模擬方法 20
2.5.1 Verlet List表列法 21
2.5.2 Cell Link表列法 22
2.5.3 Verlet List表列法結合Cell Link表列法 23
2.6 無因次化 24
第3章 分子動力學與磁性理論的結合 26
3.1 鈷銅奈米粒子物理模型的建構 27
3.2 RKKY間接交互作用理論 30
3.3 量子微擾理論 33
第4章 結果分析與討論 37
4.1 鈷銅奈米粒子微結構變化的討論 38
4.2 RKKY磁性計算結果的討論 48
4.3 量子磁性計算結果的討論 51
第5章 結論與建議 53
5.1 結論 54
5.2 建議與未來展望 55

表目錄
表 2.1鈷銅原子間之TIGHT-BINDING勢能參數 14
表 2.2無因次化基準量 25
表 2.3各物理量之無因次化量 25

圖目錄
圖 2.1 二體勢能示意圖 11
圖 2.2 多體勢能示意圖 12
圖 2.3 VELOCITY VERLET演算法流程圖 16
圖 2.6 截斷半徑示意圖 20
圖 2.7 VERLET LIST示意圖 21
圖 2.8 CELL LINK示意圖 22
圖 2.9 VERLET LIST 結合 CELL LINK建立鄰近表列 23
圖 3.1(A)完美F.C.C.晶格排列的鈷銅奈米粒子初始模型,總原子數為9597顆。(B)在2000K高溫退火處理下,平衡後的形貌,深色粒子為鈷原子,淺色粒子為銅原子。(C)退火完成後,在3K低溫下的鈷銅奈米粒子形貌,濃度比例為5%。(D) 退火完成後,在3K低溫下的鈷銅奈米粒子形貌,濃度比例為25%。 28
圖 3.2分子動力學電腦模擬流程圖 29
圖 4.1鈷銅奈米粒子退火過程中之能量曲線對應溫度分佈圖。虛線部分為鈷原子濃度X=5%,其上熔點為910K,下熔點為810K;實線部分為鈷原子濃度X=25%,其上熔點為1260K,下熔點為1140K。 42
圖 4.2(A)是鈷原子濃度比例為5%(B)是鈷原子濃度比例為25%的上、下熔點與其中間溫度所對應的RDF分佈圖。 43
圖 4.3(A)是鈷原子濃度X=5%(B)是鈷原子濃度X=25%的鈷銅奈米粒子,在上、下熔點的CO-CO、CU-CU與CO-CU分開統計的RDF分佈圖。 44
圖 4.4(A)是鈷原子濃度X=5%(B)是鈷原子濃度X=25%的鈷銅奈米粒子,在上、下熔點的角度關連函數(ACF)變化曲線圖。 45
圖 4.5是鈷原子濃度X=5%與25%的CU-CU、CO-CO與CO-CU鍵長在不同溫度下的變化分佈圖。 46
圖 4.6是鈷原子濃度X= 25%的CU-CU、CO-CO與CU-CO之 RDF第一個尖峰值對應其溫度變化統計圖。 47
圖 4.7是鈷銅奈米粒子在五個濃度比例5%、10%、15%、20%、25%條件下,其鈷原子的分佈函數G(R)圖。(A)是1600K,(B)是300K。 49
圖 4.8是五個鈷原子濃度的奈米粒子在不同溫度下的磁性強度變化圖,小插圖是鈷原子濃度與其居禮溫度的對應關係。 50
圖 4.9分別是25%與40%的鈷銅奈米粒子在無外加磁場條件下,其磁化強度對應溫度的變化關係圖。 52
參考文獻 References
1. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys” Acta Mater. 48, 279 (2000).
2. H. Chiriac, N. Lupu, “Magnetic properties of (Nd,Ce,Pr)---Fe---(Si,Al) bulk amorphous materials ” Magnetism and Magnetic materials, 196-197, 235 (1999).
3. A. Inoue et al,. “Effect of Cu or Ag on the Formation of Coexistenct Nanoscale Al Particles in Al-Ni-M-Ce (M=Cu or Ag) Amorphous Alloys” Mater. Trans. JIM, 35, 95 (1994).
4. C. Gente, M. Oehring, R. Bormann, ”Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying” Phys. Rev. B 48, 13244 (1993).
5. Z. F. Li, B. X. Liu, “Irradiation-induced amorphization and growth of dodecagonal phase in an immiscible Co-Cu system” Nuclear Insruments and Methods in Physics Reseach B 178, 224-228 (2001).
6. R. Q. Hwang, Bull. Am. Phys. Soc. 41, 223 (1996).
7. G. L. Zhou, M. H. Yang, C. P. Flynn, “Epitaxial Growth of Metastable Co-Cu Alloys by a Surface Pump Mechanism” Phys. Rev. Lett. 77, 4580 (1996).
8. W. Ping, E. Y. Jiang, Y. G. Liu, C. D. Wang, Thin Solid Films 301, 90 (1997).
9. A. G. Prieto, M. L. Fdez-Gubieda, C. Meneqhini, A. G. Arribas, S. Mobilio, “Microstructural and magnetic evolution upon annealing of giant magnetoresistance melt-spun Co-Cu granular alloys” Phys. Rev. B 67, 224415 (2003).
10. J. C. Cezar, J. C. Cezar, H. C. N. Tolentino, M. Knobel, “Structural, magnetic, and transport properties of Co nanoparticles within a Cu matrix” Phys. Rev. B 68, 054404 (2003).
11. S. Ram and P. S. Frankwicz, Phys. stat. sol. 188, 1129-1140 (2001).
12. J. R. Childress and C. L. Chien, “Reentrant magnetic behavior in fcc Co-Cu alloys” Phys. Rev. B 43, 8089 (1991).
13. X. Fan, T. Mashimo, and X. Huang, “Magnetic properties of Co-Cu metastable solid solution alloys” Phys. Rev. B 69, 094432 (2004).
14. J. H. Shim, B. J. Lee, J. P. Ahn, Y. W. Cho, and J. K. Park, J. Mater. Res. 17, 925 (2002).
15. S. P. Huang, D. S. Mainardi, P. B. Balbuena, “Structure and dynamics of graphite-supported nanoclusters” Surface Science 545, 163-179 (2003).
16. F. Baletto and R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet, “Cross-over among structural motifs in transition and noble-metal clusters” J. Chem. Phys. 116, 3856 (2002).
17. N. A. Levanov, V. S. Stepanyuk, and W. Hergert, “Energetics of Co adatoms on the Cu(001) surface” Physical Review B 61, 2230 (2000).
18. A. F. Jalbout, H. Chen and S. L.Whittenburg, “Metastable Triply Charged Diatomic Molecules Produced with Femtosecond Pulses” Appl. Phys. Lett. 81, 2217 (2002).
19. “奈米材料和奈米結構”,張立德、牟季美 著,滄海書局 2002。
20. A. E. Berkowitz, J. R. Mitchell, “Giant magnetoresistance in Heterogeneous Cu-Co alloys” Physical Review Letters 68, 3745 (1992).
21. John Q. Xiao, J. S. Jiang, “Giant magnetoresistance in nonmultilayer magnetic systems” Physical Review Letters 68, 3749 (1992).
22. W. Wang, F. Zhu, J. Weng, J. Xiao, “Nanoparticle morphology in a granular Cu-Co alloy with giant magnetoresistance” Physical Review Letters 72, 1118 (1998).
23. W. Wang, F. Zhu, W. Lai, “Microstructure, magnetic properties and giant magnetoresistance of granular Cu-Co alloy” J. Phys. D: Appl. Phys. 32, 1990-1996 (1999).
24. A. G. Prieto, M. L. F-Gubieda, C. Meneghini “Microstructural and magnetic evolution upon annealing of giant magnetoresistance melt-spun Co-Cu granular alloys” Physical Review B 67, 224415 (2003).
25. J. C. Cezar, H. C. N. Tolentino, M. Knobel, “Structual, magnetic, and transport properties of Co nanoparticles within a Cu matrix” Physical Review B 68, 054404 (2003).
26. S. Ram, P. S. Frankwicz “Granular GMR sensors of Co-Cu and Co-Ag nanoparticles synthesized through a chemical route using ” Phys. stat. sol. 188, 1129-1140 (2001).
27. K. P. Sinha and N. Kumar, “Interaction in magnetically ordered solids” (Oxford University Press, Oxford, 1980).
28. H.S.Nam, N.Hwang, B.D.Yu, J.K.Yoon “Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism” Physical Review Letters 89, 275502-1 (2002).
29. J. H. Shim , S. C. Lee , B. J. Lee , J. Y. Suh , Y. W. Cho , “Molecular dynamics simulation of a liquid gold nanoparticle” , Journal of Crystal Growth 250, 558-564 (2003).
30. F. Baletto, C. Mottet, R. Ferrando “Growth of Three-Shell Onionlike Bimetallic Nanoparticles” Physical Review Letters 90, 135504-1 (2003).
31. P. Zhao, Y. Shimomura “Molecular dynamics simulations of the behavior of small interstitial clusters in Copper” Jpn. J. Appl. Phys. 36, 7291-7295 (1997).
32. J. Irving, J. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics” Journal of Chemical Physics 18, 817-829 (1950).
33. J. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York 1997.
34. D. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London (1997).
35. J. Goodfellow et al., Molecular dynamics, CRC Press, Boston (1990).
36. M. Allen, D. Tildesley, Computer Simulation of Liquids, Oxford Science, London (1991).
37. D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, San Diego (1996).
38. D. Heermann, Computer Simulation Method, Springer-Verlag, Berlin (1990).
39. S. Foiles, M. Baskes, and M. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys” Phys. Rev. B. 33, 7983-7991 (1986).
40. M. Daw, S. Foiles, and M. Baskes, “The embedded-atom method: a review of theory and applications,” Materials Science Reports 9, 251-310 (1993).
41. M. Baskes, J. Nelson, and A. Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium” Phys. Rev. B 40, 6085-6100 (1989).
42. M. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46, 2727-2742 (1992).
43. G. Maitland, M. Rigby, E. Smith, and W. Wakeham, Intermolecular Forces, Oxford University Press, London 1987.
44. S. Erkoc, Annual Reviews of Computational IX, World Scientific Publishing Company, Singapore 2001.
45. R. Smith et al., Atomic & Ion Collisions in Solids and at Surfaces, Cambridge University Press, London 1997.
46. K. Maekawa, A. Itoh, "Friction and tool wear in nano-scalemachining- a molecular dynamics approach," Wear 188, 115-122 (1995).
47. J. Slater, G. Koster, "Simplified LCAO method for periodic potential problem," Physical Review 94, 1498-1524 (1954).
48. C. Kittle, Introduction to Solid State Physics, John Wiley & Sons, New York 1996.
49. 劉東昇,化學量子力學,徐氏基金會出版,台北,1992.
50. 江元生,結構化學,五南圖書出版,台北,1998.
51. L. Colombo, "A source code for tight-binding molecular dynamics simulation," Computational Materials Science 12, 278-287 (1998).
52. V. Rosato, M. Guillope, and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model,” Philosophical Magazine A 59, 321-336 (1989).
53. F. Cleri, and V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B 48, 22-33 (1993).
54. D. Frenkel, “Understanding Molecular Simulation from algorithms to applications”, Academic Press, 1996.
55. D. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London 1997.
56. H.Ikeda, Y.qi, T. Cagin, K. Samwer, W.L. Johnsion W. A. Goddard, “Strain rate induced amorphization in metallic nanowires” Physical Review Letters 82, 2900-2903 (1999).
57. J.L.R-Lopez, J.M.M-Carrizales, M.J-Yacaman “Molecular dynamics study of bimetallic nanoparticles: the case of alloy clusters” Applied Surface Science 219, 56-63 (2003).
58. F.Baletto, R.Ferrando “Crossover among structural motifs in transition and nobel-metal clusters” Journal of Chemical Physics 116, 3856 (2002).
59. S.Darby, T.V.M-Jones, R.L.Johnston “Theoretical study of Cu-Au nanoalloy clusters using a genetic algorithm” Journal of Chemical Physics 116, 1536 (2002).
60. 戴道生、錢昆明,鐵磁學(上冊),科學出版社。
61. 呂維鈞、周雄、孫士傑,鐵磁性材料磁激發能譜軟化研究(碩士論文),國立中山大學物理研究所,2002。
62. Shih-Jye Sun, Hsiu-Hau Lin, Phys. Lett. A 327, 73 (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code