Responsive image
博碩士論文 etd-0725105-171905 詳細資訊
Title page for etd-0725105-171905
論文名稱
Title
非晶矽薄膜電晶體應用於可曲撓式顯示器之可靠度研究與電性分析
Investigation on Reliability & Electrical Analysis of a-Si:H Thin Film Transistor used in Flexible Display
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-07
繳交日期
Date of Submission
2005-07-25
關鍵字
Keywords
非晶矽薄膜電晶體、彎曲、顯示器
display, a-Si:H Thin Film Transistor, bending
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
由於使用的方便性,傳統的平面顯示器預估將被可曲撓式顯示器所取代。基於這個原因,研究非晶矽薄膜電晶體(a-Si:H TFT)應用於液晶顯示器時,遭受不同外力產生變形時的可靠度,變的相當重要。
在本論文中,除了探討前述之項目外,亦對非晶矽薄膜電晶體施加AC Stress,來了解當薄膜電晶體同時遭受AC Stress與外力產生的變形時,所產生之影響,試圖模擬薄膜電晶體於實際操作時的情況。
利用金屬薄片上具有不同通道長度及寬度的薄膜電晶體,與以施加單軸方向之壓應力(compressive strain)與張應力(tensile strain),其施加的方向是平行於源極與汲極電流之方向;探究當遭受外力發生變形時對薄膜電晶體的效能所產生之影響。關於所用之薄膜電晶體的製程過程,最大製程溫度僅達190℃,所呈現之特性為載子遷移率約0.1 cm2/Vs、臨限電壓約1.95 V、漏電流低於10-13 A 。薄膜電晶體的彎曲方式是圓柱型彎曲,有向內彎inward (compression)及向外彎outward (tension)兩種。當施加外力產生變形時,載子遷移率會些微的改變,主要是由於彎曲產生變形時,改變了非晶矽的原始秩序。
本論文中,亦研究當非晶矽薄膜電晶體於彎曲的當下(無論內彎或外彎),再施加不同AC Stress條件,對其效能的影響。發現到當非晶矽薄膜電晶體處於彎曲並施加AC Stress時,其對元件效能的影響,更勝於無彎曲有施加AC Stress時的情況。
Abstract
Based on the convenience of the use, the traditional display will be replace by the flexible display. According to this reason, it is very important to study on the reliability of the amorphous silicon (a-Si:H) thin-film transistor (TFT) used in LCD under different mechanical strain. In this research, besides of the above-mentioned we also applied AC stress, to understand the influence of AC stress on an a-Si:H TFT under different mechanical strain.
The influence of mechanical strain on the performance of an hydrogenated amorphous silicon (a-Si:H) thin-film transistor (TFT) with different channel length and width on metal foil substrate under uniaxial compressive or tensile strain was studied, where the strain is parallel to the TFT source-drain current path. The process of TFT with the maximum temperature 190°C exhibited a field-effect mobility of 0.1 cm2/Vs and a threshold voltage of 1.95 V and the leakage current of less than 10-13 A. The TFTs were strained by inward (compression) or outward (tension) cylindrical bending. The mobility had a slightly change under the mechanical strain, which was due to the change in the disorder under bending strain.
We also researched on the influence of uniaxial compressive (tensile) strain on the performance of a-Si:H TFTs under different AC stress conditions. When the a-Si:H TFTs were strained and applied AC stress, we found the performance of a-Si:H TFTs were affected more then the flat ones.
目次 Table of Contents
Contents
Chinese Abstract……………………………………….……..i
English Abstract……………………………………………..iii
Contents………………………………………………….…....v
Table Captions……………………………………………...viii
Figure Captions………………………………………………ix
Chapter One - Introduction
1.1 Introduction……………………………………………………….1
1.1.1 Introduction…………………………………………………….1
1.1.2 Hydrogenated Amorphous Silicon…………………………….1
1.1.3 Atomic Structure and the Electron Density of States………….2
1.2 Substrate Materials…………………………………………….....5
1.2.1 Plastic Substrates…………………………………………..…..5
1.2.2 Metal Substrates……………………………………….……….6
1.2.3 Thin Glass Substrates……………………………………….….7
1.3 Defined Bending Direction…………………………………..…..9
Chapter Two - Fabrication
2.1 Deposition of Hydrogenated Amorphous Silicon
by PECVD……………………………………………………….10
2.2 Deposition of SiNx by PECVD………………………………….13
2.3 Deposition of n+ Hydrogenated Amorphous Silicon
by PECVD………………………………………….……………15
2.4 Process Flow……………………………………………………..16
Chapter Three - Apparatus and Parameters
3.1 Apparatus………………………………………………………..17
3.2 Setup instruments for I-V……………………………………....18
3.3 Method of Device Parameter Extraction………………….…...19
3.3.1 Determination of the threshold voltage……………………….19
3.3.2 Determination of the subthreshold swing……………………..19
3.3.3 Determination of the field-effect mobility……………………20
3.4 Density of States…………………………………………………21
Chapter Four - Bending experiment
4.1 Introduction……………………………………………………..23
4.2 Motivation……………………………………………………….24
4.3 Experiments……………………………………………………..25
4.4 Electrical characteristic under mechanical strain…………….26
4.5 Conclusion………………………………………………….……30
Chapter Five - Bending and AC stress experiment
5.1 Introduction……………………………………………………..31
5.2 Motivation……………………………………………………….32
5.3 Experiments……………………………………………………..33
5.4 Results and Discussion………………………………………….34
5.5 Conclusion……………………………………………………….37
Chapter Six - Low temperature experiment
6.1 Introduction……………………………………………………..38
6.2 Motivation……………………………………………………….38
6.3 Experiments……………………………………………………..39
6.4 Electrical characteristic under different temperature…….….40
6.5 Conclusion……………………………………………………….41
References..………………………………………………….42
Tables…………………………………………………….…..50
Figures…………………………………..………….………..52
參考文獻 References
References
Chapter One – Introduction
1. R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, in SID’99 Digest, Society
of Information Display, p. 14 (1999).
2. S. D. Theiss and S. Wagner, IEEE Electron Device Lett. 17, 264 (1996)
3. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett. 75, 2244(1999).
4. B. G. Streetman, Solid State Electronic Devices, Chapter 1.3, London: Prentice
Hall, 1990
5. M. J. Powell, “ The Physics of Amorphous-silicon Thin-film Transistors, ” IEEE
Trans. Electron. Devices, 36, 2753 (1989).
6. Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p17, Texas A&M
University, U.S.A. 2004.
7. W. H. Zachariasen, “The Atomic Arrangement in Glass, ” J. Am. Chem. Soc., 54, 3841 (1932).
8. F. Urbach, “The Long-wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, ” Phys. Rev., 92, 1324 (1953).
9. W. E. Spear and P. G. LeComber, “Substitutional Doping of Amorphous Silicon, ” Solid State Comm., 17, 1193 (1975).
10. Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p17, Texas A&M
University, U.S.A. 2004.
11. Y. Kuo, The Film Transistors – Material and Processes, vol. 2, p428, Texas A&M University, U.S.A. 2004.
12. Y. Kuo, The Film Transistors – Material and Processes, vol. 2, p430, Texas A&M University, U.S.A. 2004.
13. A. Weber, S. Deutschbein, A. Plichta, and A. Habeck, Society of Information Display, Digest of Technical Papers, 200th International Symposium at Boston, Ma, 53-55, May 2002.
14. Y. Kuo, The Film Transistors – Material and Processes, vol. 2, p430, Texas
A&M University, U.S.A. 2004.
15. S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur, and J. Jang, Journal of
Electrochemical Society, 151 (3), G167-G170 (2004).

Chapter Two - Fabrication
1. W. M. M. Kessels, A. H. M. Smets, D. C. Marra, E. S. Aydil, D. C. Schram, and M. C. M. van de Sanden, “ On the growth mechanism of a-Si:H,” Thin Solid Films, vol.383, pp. 154-160, 2000.
2. K. Nomoto, Y. Urano, J. L. Guizot, G.. Ganguly, and A. Matsuda. “ Role of hydrogen atoms in the formation process of hydrogenated microcrystalline silicon,” Jpn. J. Appl. Phys., vol.29, pp. L1372-L1375, 1990.
3. A. Asano, “Effects of hydrogen atoms on the network structure of hydrogenated amorphous and microcrystalline silicon thin films,” Appl. Phys. Lett., vol.56, pp.533-535, 1990.
4. C. C. Tasi, G. B. Anderson, and R. Thompson, “ Growth of amorphous, microcrystalline, and epitaxial silicon in low-temperature plasma deposition,” Mat. Res. Soc. Symp. Proc., vol.192, pp.475-480, 1990.
5. J. Mort and F. Jansen, “Plasma-Deposited Thin Films,” p.28-33 (CRC Press, Boca Raton, FL, 1986).
6. F. J. Kampas and R. W. Griffith, “ Hydrogen elimination during the glow- discharge deposition of a-Si:H alloys,” Appl. Phys. Lett., vol.39, pp.407-409,1981
7. F. J. Kampas, “Reactions of atomic hydrogen in the deposition of hydrogenated amorphous silicon by glow discharge and reactive sputtering,” J. Appl. Phys., vol. 53, pp.6408-6412, 1982.
8. P. A. Longeway, “Semiconductors and Semimetals 21A,” pp.179-193 (In: J. I. Pankove, ed., Academic Press, New York, 1984).
9. F. Giorgis, C. F. Pirri, and E. Tresso, “Structural properties of a-Si1-xNx:H films grown by plasma-enhanced chemical vapor deposition by SiH4 + NH3 + H2 gas mixtures,” Thin Solid Films, vol.307, pp.298-305, 1997.
10. R. Ishihara, H. Kanoh, Y. Uchida, O. Sugiura, and M. Matsumura, “Low-temperature chemical vapor deposition of silicon nitride from tetrasilane and hydrogen azide,” Mat. Res. Soc. Symp. Proc., vol.284, pp.3-8, 1992.
11. S. Yamakawa, S. Yabuta, A. Ban, M. Okamoto, M. Katayama, Y. Ishii, and M. Hijikigawa, “The effect of plasma treatment on the off-current characteristics of a-Si TFTs,” SID 98 Digest, pp.443-446, 1998.
12. K. Takechi, H. Uchida, and S. Kaneko, “Mobility-improvement mechanism in a-Si:H TFTs with Smooth a-Si:H/SiNx Interface,” Mat. Res. Soc. Symp. Proc., vol.258, pp.955-960, 1992.
13. C. R. Kagan, P. Andry, The Film Transistors, p52-p57, IBM T. J. Watson Research Center, Yorktown Heights, New York, U.S.A. 2003.

Chapter Three - Apparatus and Parameters
1. R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, 1991.
2. W. E. Spear and P. G. Le Comber, “Investigation of the Localized State Distribution in Amorphous Si Film, ” J. Non-Cryst. Solids, 8-10, 727-738 (1972).
3. M. J. Powell, “Analysis of Field-effect-conductance Measurements on Amorphous Semiconductors, ” Phil. Mag. B, 43 (1), 93 (1981).
4. C. Y. Huang, S. Guha, and S. J. Hudgen, “Study of Gap States in Hydrogenated Amorphous Silicon by Transient and Steady-state Photoconductivity Measurement, ” Phys. Rev. B, 27 (12), 7460 (1983)
5. J. D. Cohen, D. V. Lang, and J. P. Harbison, “Direct Measurement of the Bulk Density of Gap States in n-type Hydrogenated Amorphous Silicon, ” Phys. Rev. Lett., 45 (3), 197 (1980).
6. M. Hirose, T, Suzuki, and G. H. Döhler, “Electronic Density of States in Discharge-produced Amorphous Silicon, ” Appl. Phys. Lett., 34 (3), 234 (1979).
7. P. Viktorovitch and G. Moddel, “Interpretation of the Conductance and Capacitance Frequency Dependence of Hydrogenated Amorphous Silicon Schottky Barrier Diodes, ” J. Appl. Phys., 51 (9), 4847 (1980).
8. M. Shur and M. Hack, “Physics of Amorphous Silicon Based Alloy Field-effect Transistors, ” J. Appl. Phys., 55 (10), 3831 (1984).
9. S. Kishida, Y. Naruke, Y. Uchida, and M. Matsumura, “Theoretical Analysis of Amorphous-silicon Field-effect-transistors, ” Jpn. J. Appl. Phys., 22 (3), 511 (1983).
10. J. G. Shaw and M. Hack, “An Analytical Model for Calculating Trapped Charge in Amorphous Silicon, ” J. Appl. Phys., 64 (9), 4562 (1988).
11. M. S. Shur, M. D. Jacunski, H. C. Slade, and M. Hack, “Analytical Models for Amorphous-silicon and Poly-silicon Thin-film Transistors for High-definition-display Technology, ” J. of the SID, 3-4, 223 (1995)
12. Y. Kuo, The Film Transistors – Material and Processes, vol. 1, p83, Texas A&M
University, U.S.A. 2004.

Chapter Four - Bending experiment
1. R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, in SID’99 Digest, Society of Information Display, p. 14 (1999).
2. S. D. Theiss and S. Wagner, IEEE Electron Device Lett. 17, 264 (1996)
3. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett. 75, 2244(1999).
4. G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks, Sol. Cells,2, 227 (1980).
5. S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur,and J. Jang ,Journal of The Electrochemical Society, 151 (3) G167-G170 (2004)
6. S. Sherman, S. Wagner, and R. A. Gottscho, Appl. Phys. Lett. 69, 3242 (1996).
7. S. Sherman, P. Y. Lu, R. A. Gottscho, and S. Wagner, Mater. Res. Soc. Symp. Proc. 377, 749 (1995).
8. G. D. Cody, T. Tiedje, B. Abeles, B. Brooks, and Y. Goldstein, Phys. Rev. Lett. 47, 1480 (1981)
9. H. Gleskovaa) , S. Wagner, W. Soboyejo and Z. Suo, J. Appl. Phys, 92, 6224(2002)
10. S. Luana and Gerold W. Neudeck, J. Appl. Phys. 72 (2), p.766(1992).
11. M. J. Powell, C. Glasse, P. W. Green, I. D. French, and I. J. Stemp, IEEE ELECTRON DEVICE Lett. 21( 3), 104 (2000)

Chapter Five - Bending and AC stress experiment
1. R. Baeuerle, J. Baumbach, E. Lueder, and J. Siegordner, in SID’99 Digest, Society of Information Display, p. 14(1999).
2. S. D. Theiss and S. Wagner, IEEE Electron Device Lett. 17, 264 (1996)
3. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett. 75, 2244(1999).
4. Y. H. Tai, J. W. Tai, F. C. Su. And C. H. Cheng Appl. Phys. Lett. 67, 76(1995).
5. Chun-Yao Huang, Teh-Hung Teng, Jun-Wei Tsai and Huang-Chung Cheng, Jpn. J. Appl. Phys. Vol.39 pp.3867-3871 (2000)
6. Chun-Yao Huang, Jun-Wei Tsai, Teh-Hung Teng, Cheng-Jer Yang and Huang-Chung Cheng, Jpn. J. Appl. Phys. Vol.39 pp.5763-5766 (2000)
7. S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J . H.Hur,and J. Jang ,Journal of The Electrochemical Society, 151 (3) G167-G170 (2004).

Chapter Six – Low temperature experiment
1. C. Y. Huang, T. H. Teng, C. J. Yang, C. H. Tseng and H. C. Cheng, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L316–L318 Part 2, No. 4A.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.112.152
論文開放下載的時間是 校外不公開

Your IP address is 18.119.112.152
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code