Responsive image
博碩士論文 etd-0725106-012354 詳細資訊
Title page for etd-0725106-012354
論文名稱
Title
超寬頻系統中具抑制非視線誤差之分佈式TDOA/AOA定位與資料融合方法
Distributed TDOA/AOA Location and Data Fusion Methods with NLOS Mitigation in UWB Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-25
關鍵字
Keywords
超寬頻、抑制非視線誤差、分佈式定位、抵達時間差、抵達角度、資料融合、卡爾曼濾波器、擴展式資訊濾波器
Ultra-Wideband, NLOS mitigation, distributed location, TDOA, AOA, data fusion, Kalman filter, extended Information filter
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
超寬頻(Ultra-Wideband, UWB)訊號具高度的距離解析能力,在無線感測器網路可提供精確的定位服務。藉由多感測器來追蹤目標可提供較佳的效能,但集中式演算法卻不適用於無線感測器網路。此外,非視線(Non Light of Sight, NLOS)傳播誤差導致定位系統之精確度嚴重下降。在本篇論文中,提出了非視線鑑別與抑制之技術,利用修改的偏移式卡爾曼濾波器來降低超寬頻環境中非視線傳播的抵達時間(Time of Arrival, TOA)誤差。我們結合修改後的偏移式卡爾曼濾波器與滑動視窗針對不同程度的非視線誤差進行立即地鑑別與抑制。
為了處理不精確的非視線抵達角度之影響,我們也針對抵達角度(Angle of Arrival, AOA)的選擇與融合方法進行探討。在分佈式定位架構方面,我們使用了擴展式資訊濾波器(Extended Information Filter, EIF)來處理抵達時間差(Time Difference of Arrival, TDOA)與抵達角度之測量值,並有效進行目標定位與追蹤。以擴展式資訊濾波器取代擴展式卡爾曼濾波器(Extended Kalman Filter, EKF)可容易地吸收選擇的抵達角度而不會造成維度動態的變化。為了減輕運算量,感測器被分為不同的群組完成分佈式的抵達時間差與抵達角度定位,然後各群組可容易地消化其他群組的資訊來維持精確的定位。
模擬結果驗證所提出之架構能有效抑制非視線誤差,並於無線感測器網路中,透過分佈式定位與資料融合提昇位置估測與目標追蹤之精確度。
Abstract
Ultra Wideband (UWB) signal can offer an accurate location service in wireless sensor networks because its high range resolution. Target tracking by multiple sensors can provide better performance, but the centralized algorithms are not suitable for wireless sensor networks. In additional, the non line of sight (NLOS) propagation error leads to severe degradation of the accuracy in location systems. In this thesis, NLOS identification and mitigation technique utilizing modified biased Kalman filter (KF) is proposed to reduce the NLOS time of arrival (TOA) errors in UWB environments. We combine the modified biased Kalman filter with sliding window to identify and mitigate different degree of NLOS errors immediately.
In order to deal with the influence of inaccurate NLOS angle of arrival (AOA) measurements, we also had a discussion on AOA selection and fusion methods. In the distributed location structure, we used the extended Information filter (EIF) to process the formulated time difference of arrival (TDOA) and AOA measurements for the target positioning and tracking. Instead of using extended Kalman filter, extended Information filter can assimilate selected AOA easily without dynamic dimensions. The sensors are divided into different groups for distributed TDOA/AOA location to reduce computation and then each group can assimilate information from other groups easily to maintain precise location.
The simulation results show that the proposed architecture can mitigate NLOS errors effectively and improve the accuracy of target positioning and tracking from distributed location and data fusion in wireless sensor networks.
目次 Table of Contents
誌謝.............................................................................................................i
摘要............................................................................................................ii
Abstract..................................................................................................... iii
目錄...........................................................................................................iv
圖目錄.......................................................................................................vi
表目錄........................................................................................................x
第一章 緒論..............................................................................................1
1.1 研究背景.....................................................................................1
1.2 研究動機.....................................................................................2
1.3 論文架構.....................................................................................3
第二章 無線定位法與距離模型..............................................................4
2.1 無線定位原理.............................................................................4
2.1.1 接收訊號強度定位法......................................................4
2.1.2 訊號抵達角度定位法......................................................5
2.1.3 訊號抵達時間定位法......................................................6
2.1.4 訊號抵達時間差定位法..................................................8
2.1.5 混合式定位法................................................................10
2.2 距離量測模型...........................................................................11
2.3 超寬頻系統非視線誤差模型...................................................12
第三章 非視線傳播之鑑別與抑制方法................................................14
3.1 非視線傳播之鑑別方法...........................................................14
3.1.1 多項式擬合法................................................................15
3.1.2 卡爾曼濾波器................................................................16
3.2 非視線誤差之抑制方法...........................................................21
3.2.1 直視距離重建法............................................................22
3.2.2 偏移式卡爾曼濾波器....................................................23
3.3 非視線傳播鑑別與抑制方法之結合.......................................30
3.4 抵達角度之選擇與探討...........................................................38
第四章 具抑制非視線誤差之TDOA/AOA 定位法.............................39
4.1 擴展式卡爾曼濾波器...............................................................39
4.2 多感測器資料融合...................................................................41
4.2.1 資訊濾波器....................................................................42
4.2.2 解中心化之計算方法....................................................44
4.3 使用擴展式資訊濾波器之分佈式定位...................................45
4.3.1 分佈式定位系統架構....................................................45
4.3.2 擴展式資訊濾波器........................................................46
4.3.3 結合AOA 選擇之分佈式TDOA 定位........................47
4.4 資訊矩陣與幾何精度稀釋.......................................................50
第五章 電腦模擬與分析........................................................................55
5.1 具非視線誤差抑制之定位模擬...............................................55
5.1.1 抑制非視線抵達時間誤差之模擬................................57
5.1.2 抵達角度選擇與定位效能之模擬................................67
5.2 非視線情形下分佈式定位與融合之模擬...............................69
5.2.1 感測器數量對定位效能之影響....................................70
5.2.2 非視線感測器數量對融合定位效能之影響................72
5.2.3 感測器分組方式對融合定位效能之影響....................81
第六章 結論與建議................................................................................85
參考文獻..................................................................................................87
參考文獻 References
[1] Federal Communications Commission, “Revision of part 15 of the commission's rules regarding ultra- wideband transmission systems,” First Report and Order, ET Docket 98-153, FCC 02-48, April 2002.
[2] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15/
[3] J. Caffery, Jr., Wireless location in CDMA cellular radio systems, Boston: Kluwer Academic, 2000.
[4] J. Foerster et al., “Channel modeling sub-committee report final,” IEEE 802.15-02/490r1, Feb. 2003.
[5] A. A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communication, vol. 5, pp.128-137, Feb. 1987.
[6] J. C. Liberti and T. S. Rappaport, “A geometrically based model for line-of-sight multipath radio channels,” in Proceedings of the IEEE Vehicular Technology Conference, vol. 2, pp 844-848, May 1996.
[7] W. H. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-12, pp. 187-193, March 1976.
[8] B. T. Fang, “Simple solutions for hyperbolic and related position fixes,” IEEE Transactions on Aerospace and Electronic Systems, vol. 26, pp. 748-753, Sep. 1990.
[9] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, Vol. 42, pp. 1905-1915, Aug. 1994.
[10] S. Venkatraman and J. Caffery, Jr., “Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments,” in Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 1, pp. 274-278, Mar. 2004.
[11] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems,” IEEE Transactions on Wireless Communications, vol. 1, pp. 439-447, July 2002.
[12] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in TDOA mobile location,” in Proceedings of the IEEE Global Telecommunications Conference, vol. 1, pp. 680-684, November 2001.
[13] L. Cong and W. Zhuang, “Nonline-of-sight error mitigation in mobile location,” IEEE Transactions on Wireless Communications, vol. 4, pp. 560-573, March 2005.
[14] P.-C. Chen, “A non-line-of-sight error mitigation algorithm in location estimation,” in Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 1, pp. 316-320, September 1999.
[15] Y. He, H.-Y. Hu, and S. Zhou, “A TOA based believable factor mobile location algorithm,” in Proceedings of the 2004 IEEE Wireless Communications and Networking Conference, vol. 1, pp. 260-263, March 2004.
[16] M. P. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of the 5th IEEE International Conference on Universal Personal Communications, vol. 2, pp. 827-831, September 1996.
[17] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 3, pp. 1969-1973, March 2003.
[18] M. Najar and J. Vidal, “Kalman tracking for mobile location in NLOS situations,” in Proceedings of the 14th IEEE 2003 International Symposium, vol. 3, pp. 2203-2207, September 2003.
[19] M. Najar, J. M. Huerta, J. Vidal, and J. A. Castro, “Mobile location with bias tracking in non-line-of-sight,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal, vol. 3, May 2004.
[20] B. Friedland, “Treatment of bias in recursive filtering,” IEEE Transactions on Automatic Control, vol. 14, pp. 359-367, August 1969.
[21] H. F. Durrant-Whyte, B. Rao, and H. Hu, “Toward a fully decentralized architecture for multi-sensor data fusion,” in Proceedings of the IEE Colloquium on Principles and Applications of Data Fusion, pp. 2/1-2/4, February 1991.
[22] M. Bozorg, E. M.Nebot, and F. Durrant-Whyte, “A decentralised navigation architecture,” in Proceeding of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3413-3418, May 1998.
[23] A. G. Mutambara, “Information based estimation for both linear and nonlinear systems,” in Proceedings of the American Control Conference, vol. 2, pp. 1329-1333, June 1999.
[24] Y. Zhu, H. You, J. Zhao, K. Zhang, and X. R. Li, “The optimality for the distributed Kalman filtering fusion with feedback,” Automatica, vol. 37, pp. 1489-1493, September 2001.
[25] S. Kagami and M. Ishikawa, “A sensor selection method considering communication delays,” in Proceeding of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 206-211, May 2004.
[26] W.-T Liu, ”Indoor position and tracking with NLOS error mitigation in UWB systems,” Master’s thesis, Department of Electrical Engineering of Nation Sun Yat-Sen University, July 2005.
[27] C.-D. Wann, W.-T. Liu, “Positioning and tracking with NLOS mitigation using extended Kalman filter in UWB Systems,” in Proceeding of the 2005 International Conference on Pervasive Systems and Computing, Las Vegas, Nevada, USA, Jun. 2005.
[28] C.-D. Wann and Y.-J. Yeh, “A hybrid TDOA/AOA positioning technique for indoor UWB systems,” in Proceeding of the 2005 International Symposium on Communications, Kaohsiung, Taiwan, Nov. 2005.
[29] M. S. Phatak, “Recursive method for optimum GPS satellite selection,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37, pp. 751-754, April 2001.
[30] N. Levanon, “Lowest GDOP in 2-D scenarios,” IEE Proceedings - Radar, Sonar and Navigation, vol. 147, pp. 149-155, June 2000.
[31] B. Yaakov, X. R. Li and K. Thiagalingam, Estimation with applications to tracking and navigation, New York: Wiley, 2001.
[32] M. Steven Kay, Fundamentals of statistical signal processing: estimation theory, Englewood Cliffs, NJ: Prentice Hall, 1993.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.17.20
論文開放下載的時間是 校外不公開

Your IP address is 3.145.17.20
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code