Responsive image
博碩士論文 etd-0725106-105947 詳細資訊
Title page for etd-0725106-105947
論文名稱
Title
以液相沉積法備製鈦酸鍶膜之特性分析
Characterization of SrTiO3 Films by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-13
繳交日期
Date of Submission
2006-07-25
關鍵字
Keywords
熱退火、液相沉積法、鈦酸鍶
thermal annealing, Strontium titanate, LPD
統計
Statistics
本論文已被瀏覽 5976 次,被下載 1459
The thesis/dissertation has been browsed 5976 times, has been downloaded 1459 times.
中文摘要
當閘極氧化層的厚度縮小情況下會有嚴重的漏電流問題, 因此研究新的高介電常數材料來取代原有的氧化曾非常的重要.
二氧化鈦膜具有高介電係數, 加入鍶形成鈦酸鍶之後會大幅增加介電常數, 因此我們研究以液相沉積法來成長鈦酸鍶膜, 經過一連串的改良我們發現態酸鍶膜不但具有高介電常數, 也能經由改善使它具有良好的介面品質以取代二氧化鈦.
對於物性與化性方面,我們利用掃描式電子顯微鏡(SEM)、反射式光譜儀、二次離子質譜儀(SIMS)、傅立葉紅外線光譜儀(FTIR)與X光繞射儀(XRD)分析,並製作MOS之電容結構以量測其介電特性,並針對鈦酸鍶膜之漏電流密度與介電常數等與製程參數之關係加以研究探討。此外,分別於氮氣、笑氣與氧氣環境中熱退火後,研究與討論其電特性的改善。
Abstract
The area of advanced gate dielectrics has gained considerable attention recently, and there are significant leakage current and reliability concerns for oxy-nitride in this regime. So it’s an important business to use alternate high-k dielectrics instead of oxy-nitride.
Titanium dieoxide shows a high dielectric constant for dielectric applications. Besides, strontium can create additional oxygen vacancies that can enhance dielectric constant. In this study, we prepared SrTiO3 film by liquid phase deposition which is a novel material considered to have high dielectric constant. From several characteristic measurements, we found that SrTiO3 with exhibiting higher dielectric constant and well interface state which is very promising candidates to instead of titanium dieoxide.
The physical and chemical properties of SrTiO3 films by means of several measuring instruments, including Fourier transform infrared spectrometer (FTIR), secondary ion spectrometer (SIMS), and X-Ray diffractometer (XRD). An Al / SrTiO3 / Si metal-oxide-semiconductor (MOS) capacitor structure was used for the electrical measurements. To improve the electrical properties, we investigated the characteristics of SrTiO3 films after annealing in oxygen, nitrous oxide, and nitrogen ambient. Including the variations of thickness, structure, dielectric constant, and leakage current were discussed in this work.
目次 Table of Contents
1.INTRODUCTION 1
1-1 Current Problem of MOSFETs Dimensions Scaling Down 1
1-2 High Dielectric Constant Materials 2
1-3 Characteristics and Applications of SrTiO3 3
1-4 Preparation Methods of STO Films 3
1-5 Advantages of Liquid Phase Deposition 4

2.EXPERIMENTS 6
2-1 Liquid Phase Deposition System 6
2-2 Cleaning of Silicon Substrate 7
2-3 Preparation of Deposition Solution 8
2-4 Films Deposition 9
2-5 Proposed Chemical Equilibriums of STO Films 9
2-6 Characteristics 11
2-6-1 Physical Properties 11
2-6-2 Chemical Properies 12
2-6-3 Electrical Properties 12

3.RESULTS AND DISCUSSION 16
3-1 Physical Properties of As-deposited STO Films 17
3-1-1 Deposition Rate as a Function of Sr(NO3)2 Molarity in Deposition Solution 17
3-1-2 SEM Cross-sectional View and Top View of STO Films on Silicon Substrate 18
3-1-3 Structure of STO Films 19
3-1-4 SIMS Depth Profile of STO Films 19
3-2 Chemical Properties of As-deposited STO Films 20
3-2-1 FTIR Spectra of STO Films 20
3-3 Electrical Properties of As-deposited STO Films 21
3-3-1 Current-Voltage (I-V) Measurement 21
3-3-2 Capacitance-Voltage (C-V) Measurement 22
3-4 Physical Properties of Post-annealed STO Films 23
3-4-1 Deposition Rate of Post-annealed STO Films 24
3-4-2 SEM Cross-sectional View and Top View of post-annealing STO Films on Silicon Substrate 25
3-4-3 X-ray Diffraction Pattern of STO Films by Annealing in N2, O2 and N2O Ambient 25
3-5 Chemical Properties of Post-annealed STO Films 27
3-5-1 SIMS Depth Profile of Post-annealed STO Films 27
3-5-2 FTIR Spectra of As-deposited and Post-annealed STO Films 28
3-5-3 XPS Spectra of O2-annealing STO Films at Different Annealing Temperature 29
3-6 Electric Properties of Post-annealed STO Films 29
3-6-1 Improvements of Electrical Properties by Annealing in N2 Ambient 29
3-6-2 Improvements of Electrical Properties by Annealing in O2 Ambient 32
3-6-3 Improvements of Electrical Properties by Annealing in N2O Ambient 34
3-6-4 Distributions of Positive Charges of in STO Films 36
3-6-5 Analysis of Hysteresis Loops 37
3-7 Improvement of Leakage Current by STO/SiO2 Structure 38
3-7-1 Motive of Improvement by STO/SiO2 Structure 38
3-7-2 Electric characteristic of STO/SiO2 Films 38
3-8 Smoothness of Sr Doped TixSi(1-x)Oy Films Prepared 40

4.CONCLUSIONS 40

5.FUTURE GOALS 40
參考文獻 References
[1] Yuan Taur, Tak H. Ning, “Fundamentals of Modern VLSI Devices”, p.96, 1998.
[2] K. J. Hubbard and D. G. Schlom, “Thermodynamic Stability of Binary Oxides in Contact with Silicon,” J. Materials Research, vol. 11, pp. 2757-2776, 1996.
[3] R. M. Wallace, University of North Texas.
[4] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics,” IEEE EDS vanguard series of independent short courses, pp. 129-133, 2005
[5] J. D. Deloach, G. Scarel, and C. R. Aita, “Correlation between titania film structure and near ultraviolet optical absorption,” J. Appl. Phys., vol. 85, pp. 2377-2384, 1999.
[6] H. Tang, K.Prasad, R. Sanjinès, P. E. Schmid, and F. Lévy, “Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[7] X. H. XU, M. WANG, Y. HOU, et al., “Effect of Thermal Annealing on Structural Properties, Morphologies and Electrical Properties of TiO2 Thin Films Grown by MOCVD,” Cryst. Res. Technol., vol. 37, pp. 431-439, 2002.
[8] J. M. Wu and C. J. Chen, “Dielectric properties of (Ba, Nb) doped TiO2 ceramics: Migration mechanism and roles of (Ba, Nb),” J. Mater. Science., vol. 23, pp. 4157-4164, 1988.
[9] J. J. Cheng and J. M. Wu, “Effect of Powder Characteristics on Electrical Properties of (Ba, Bi, Nb)-Added TiO2 Ceramics,” Jpn. J. Appl. Phys., vol. 35, pp.4704-4710, 1996.
[10] A. F. Tasch, Jr. and L. H. Parker, “Memory Cell and Technology Issues for 64- and 256-Mbit One-transistor Cell MOSD DRAMs,” Proc. IEEE, vol. 77, pp. 374-388 ,1989.
[11] P. C. Joshi and S. B. Krupanidhi, “Structural and Electrical Characteristics of SrTiO3 Thin Films for Dynamic Random Access Memory Applications,” J. Appl. Phys., vol. 73, pp. 7627-7634, 1993.
[12] M. N. Kamalasanan, N. D. Kumar, and S. Chandra, “Structural, Optical, and Dielectric Properties of Sol-gel Derived SrTiO3 Thin Films,” J. Appl. Phys., vol. 74, pp. 679-686, 1993.
[13] (a) P.C. Joshi, S.B. Krupanidhi, “Structural and electrical characteristics of SrTiOs thin films for dynamic” J. Appl. Phys. Vol. 73, pp. 7627-7634, 1993 (b) A.F. Tasch, Jr., L.H. Parker, Proc. “Memory Cell and Technology Issues for 64-and 256-Mbit One-Transistor Cell MOS DRAMs” IEEE, vol. 77, pp. 374-388, 1989.
[14] T. Kunihisa, S. Yamamoto, M. Nishijima, T. Yokohama, M. Nishitsuji, K. Nishii, O. Ishikawa, “Low power dissipation single-supply MMIC power amplifier for 5.8 GHz electronic toll collection system” IEICE Trans. Electron. vol. E82-C, pp. 1921-1927, 1999.
[15] G.D. Wilk, R.M. Wallace, J.M. Anthony “High- gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys., vol. 89, pp. 5243-5275, 2001. (and references therein).
[16] M.N. Kamalasanan, N.D. Kumar, S. Chandra, “optical, and dielectric properties of sol-gel derived SrTiO3 thin films,” J. Appl. Phys. vol. 74, pp. 679-686, 1993.
[17] Song, M. H.; Lee, Y. H.; Hahn, T. S.; Oh, M. H.; Yoon, K. H. J., “Effects of a new stacking method on characteristics of multilayered BaTiO3 thin film,” Appl. Phys., vol.79, 3744-3748, 1996..
[18] Hahn, Y. B.; Kim, D. O. J. Vac. Sci. Technol. 1999, A17, 1982.
[19] Tsurumi, T.; Suzuki, T.; Yamaze, M.; Daimon, M. Jpn, “Fabrication of Barium Titanate/Strontium Titanate Artificial Superlattice by Atomic Layer Epitaxy,” J. Appl. Phys., vol. 33, pp. 5192-519, 1994..
[20] Tachiki, M.; Noda, M.; Yamada, K.; Kobayashi, T. J. Appl. Phys. 1998, 83, 5351.
[21] Klee, M.; Mackens, “Sol-gel and MOD processing of layered perovskite and SrTiO3 films,” U. Microelectron. Eng., vol 29, pp. 185-188, 1995.
[22] Yoshimura, M.; Suchanek, W. L.; Watanabe, T.; Sakurai, B. J. Euro. Ceram. “In Situ Fabrication of SrTiO3-BaTiO3 Layered Thin Films by Hydrothermal-Electrochemical Technique,” J. Euro. Ceram. Soc. vol. 19, pp. 1353-1359, 1999.
[23] M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sajavaara, and J. Keinonen, “Atomic Layer Deposition of SrTiO3 Thin Films from a Novel Strontium Precursor- Strontium-bis(tri-isopropyl cyclopentadienyl),” Chem. Vapor Deposition, vol. 7, pp. 75-80, 2001.
[24] Yoshimura, M.; Suchanek, W. L.; Byrappa, K. Mater. Res. Bull. “Soft solution processing: A strategy for one-step processing of advanced inorganic materials,” web of science, vol. 25, pp. 17-25, 2000.
[25] Takesshi Kamada, Masatoshi Kitagawa, Munehiro Shibuya and Takashi Hirao, “Structure and Properties of silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys., vol. 30, pp. 3594-3596, 1991.
[26] D. K. Sarkar, E. Desbiens, and M. A. El Khakani, “High-k titanium silicate dielectric thin films grown by pulsed-laser deposition,” Appl. Phys. Lett., vol. 80, pp.294-296, 2002.
[27] X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[28] Jenq-Shiuh Chou and Si-Chen Lee, “The Initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition,” J. Electrochem. Soc., vol. 141, pp. 3214-3218, 1994.
[29] S. K. Ghandhi, “Etching and Cleaning,” VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, 1994.
[30] Raymond Chang, “Chapter 4: 4.4 Concentration and Dilution of Solutions,” Chemisty (fifth edition), p. 136, McGraw-Hill, New York, 1994.
[31] (a) Schmitt, R. H.; Grove, E. L.; Brown, R. D. J. Am. Chem. Soc. 1960, 82, 5292. (b) Buslaev, Y. A.; Dyer, D. S.; Ragsdale, R. O. Inorg. Chem., 6, pp. 2208-2212, 1967.
[32] Deki, S.; Aoi, Y.; Asaoka, Y.; Kajinami, A.; Mizuhata, M. J. “Monitoring the growth of titanium oxide thin films by the liquid-phase deposition method with a quartz crystal microbalance”
Mater. Chem., vol. 7, pp. 733-736, 1997.
[33] (a) Mesmer, R. E.; Palen, K. M.; Bases, C. F., Jr. Inorg. Chem., vol. 12, 89, 1973. (b) Wamser, C. A. J. Am. Chem. Soc., vol. 73, 49, 1951. (c) Wamser C. A. J. Am. Chem. Soc., vol. 70, 1209, 1948.
[34] Yanfeng Gao, Yoshitake Masuda, and Kunihito Koumoto, “Microstructure-Controlled Deposition of SrTiO3 Thin Film on Self-Assembled Monolayers in an Aqueous Solution of (NH4)2TiF6-Sr(NO3)2-H3BO3,” Chem. Mater. vol. 15, pp. 2399-2410, 2003.
[35] Yanfeng Gao, Yoshitake Masuda, Tetsu Yonezawa, and Kunihito Koumoto, “Site-Selective Deposition and Micropatterning of SrTiO3 Thin Film on Self-Assembled Monolayers by the Liquid Phase Deposition Method,” Chem. Mater, vol. 14, pp. 5006-5014, 2002.
[36] N. M. Laptash, O. G. Maslennikova, Y. a. Kaidalova, “ammonium Oxofluorotitanates,” H. Fluo. Chem., vol. 99, pp. 133-137, 1999.
[37] P. Madhu Kumar, S. Badrinarayanan, Murali Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000.
[38] P. Lange, H. Bernt, E. Hartmannsgruber, and F. Naumann, “Growth Rate and Characterization of Silicon Oxide Films Grown in N2O Atmosphere in a Rapid Thermal Processor,” J. Electrochem. Soc., vol. 141, pp. 259-263, 1994.
[39] W. A. Pliskin, "Comparison of properties of dielectric films deposited by various methods," J. Vac.Sci. Technol., vol. 41, pp. 1064-1081, 1977.
[40] (a) Kim, S.; Park, C. “Leakage Current Behavior of Acceptor and Donor-Doped (Ba0.5Sr0.5)TiO3 Thin Films,” Appl. Phys. Lett., vol. 75, pp. 2554-2556, 1999. (b) Copel, M.; Baniecki, J. D.; Duncombe, P. R.; Kotecki, D.; Laibowitz, R.; Neumayer, D. A.; Shaw, T. M. “Compensation Doping of Ba 0:7Sr0:3TiO3 Thin Films,” Appl. Phys. Lett., vol. 73, 1832, 1998.
[41] Yoon-Hae Kim, Moo Sung Hwang, Hyeong Joon Kim, Jin Yong Kim and Young Lee, “Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films” J.Appl. Phys., vol. 90, pp. 3367-3370, 2001.
[42] L. J. Chen, Microelectronics Materials and Processing, p.367
[43] International SEMATECH
[44] Semiconductor devices, physics and technology, 2ne ed
[45] B.K. Johnson, R.H. Lasseter, and F.L. Alvarado “Incorporation of a SMES Coil into a Superconducting LVDC Transmission System” IEEE Transactions on Applied Superconductivity, vol. 7, NO. 2, pp. 419-422, JUNE 1997
[46] D. C. Gilmer, X. C Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter and J. Yan: IEEE Trans. Electron Devices, vol. 44, pp. 104, 1997.
[47] J. Robertson, “Electronic structure and band offsets of
high-dielectric-constant gate oxides,”MRS Bulletin Mar, pp.217, 2002.
[48] Hyunjung Shin, Mark R. De Guire and Arthur H. Heuer, “Electrical properties of TiO2 thin films formed on self-assembled organic monolayers on silicon”, J. Appl. Phys., vol. 83, pp. 3311-3317, 1998
[49] S. Wolf and R. N. Tauber, “Silicon Processing for The VLSI Era,” Lattice Press, vol. 1,pp. 57, 1986.
[50] D. L. Heald, R. M. Das, et al., J. Elactrochem. Soc., vol. 123, pp. 302, 1976.
[51] L. C. Parrillo, “VLSI Process Integration,” in VLSI technology (2nd ed.) (S.M. Sze, eds) McGrow-Hill, New York, 1988.
[52] S. C. Sun and T. F. Chen, “Effects of Electrode Materials and Annealing Ambients on the Electrical Properties of TiO2 Thin Films by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys., vol. 36, pp.1346-1350, 1997.
[53] Wei-Shin Lu, Jenn-Gwo Hwu, “Reliable fluorinated thin gate oxides propared by liquid phase deposition following rapid thermal process,” IEEE Electron Device Lett., vol. 17, pp.172-174, 1996.
[54] Guha, S.; Cartier, E.; Gribelyuk, M. A.; Bojarczuk, N. A.; Copel, M.C. “Atomic Beam Deposition of Lanthanum and Yttrium Based Oxide Thin Films for Gate Dielectrics,” Appl. Phys. Lett., vol. 77, pp. 2710, 2000.
[55] Dieter K. Schroder, “semiconductor material and device characterization”, pp. 360-362, 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code