Responsive image
博碩士論文 etd-0725106-162353 詳細資訊
Title page for etd-0725106-162353
論文名稱
Title
酶與核酸分子液相交互作用之原子力顯微鏡研究
Study on Enzyme and Nucleic Acid Interactions by AFM in Liquids
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-18
繳交日期
Date of Submission
2006-07-25
關鍵字
Keywords
雲母、交互作用、核酸
DNA, atomic force microscopy, restriction enzyme, TM-AFM
統計
Statistics
本論文已被瀏覽 5673 次,被下載 4
The thesis/dissertation has been browsed 5673 times, has been downloaded 4 times.
中文摘要
原子力顯微鏡(AFM)的解析度雖仍不及電子顯微鏡,但液相AFM配合輕敲掃描卻是最合適在接近生理環境下觀測生物分子之技術。然其執行上必須克服一些問題方足以應用於生物體系之研究。本論文發現在溶液中使用含二價陽離子之緩衝液能有效固定DNA分子,另外針對懸臂驅動頻率、輕敲時振幅之設定、回饋控制參數及掃描速度尋求最佳工作條件。在探討Ssp I-linearized pUC19 DNA/EcoR I限制酶交互作用體系,可明顯觀察複合體某些特殊結構。例如:在限制酶切割DNA鏈時,捕捉到EcoR I在特定識別位置上使DNA呈銳角彎曲之中間態影像,並引申出作用過程中酶運動之滑行、跳躍或在迴圈構型上互相換位等模式。AFM即時偵測酶/核酸反應過程研究中則已有初步結果,但欲取得真正動態資訊,仍有待努力。
Abstract
The image resolution of atomic force microscopy (AFM) is still less superior to that of the electron microscopy (EM). However AFM operated in liquids complemented by Tapping-mode (TM) detection proves to be more suitable for imaging biomolecules in physiological-like environments. Nevertheless, manipulation of AFM in solution turned out to be non-trivial, several technical difficulties were encountered. In the thesis, I report using divalent cation-containing buffer as a feasible method to immobilize DNA molecules effectively for imaging in liquid media. AFM operating conditions, such as cantilever oscillating drive frequency, setpoint amplitude, feedback control parameters and scan rates were studied to obtain the optimized function. Various AFM images of Ssp I-linearized pUC19 DNA/EcoR I restriction enzyme complexes were captured, revealing the molecular details of their complex machineries. For example, the intermediate stage of the enzyme cleavage action was displayed by images showing that DNA was bent by an acute angle at the active site in the presence of one single EcoR I molecule. Some evidence for a jumping, sliding or intersegmental transfer mechanism is achieved. To trace the enzyme-DNA interaction dynamic in real time, preliminary results were obtained, but further improvements are required.
目次 Table of Contents
中文摘要………….……………………………………………………i
英文摘要………………………………………………………………ii
目錄………………………………………………………………….iii
圖表目錄………………………………………………………………vi

第壹章 緒論………………………………………………………1
1-1 前言…………………………………………………………1
1-2 研究背景………………………………………………....2
1-2.1 AFM研究液相DNA分子………………………...…….……3
1-2.2 DNA與蛋白質的交互作用………………………...……..5
RNA polymerase complexes……..….….…….....…5
Enzymatic degradation…………………………………6
1-3 研究動機……………………………………………………8
第貳章 儀器與實驗介紹…………………………………………9
2-1 實驗儀器…………………………………………………………9
2-2 原子力顯微鏡原理………………………………………………9
2-3 TM-AFM氣、液相之掃描………………………………………..10
氣相操作步驟…………………………………………………..12
液相操作步驟…………………………………………………..13
2-4 實驗材料…………………………………………………………15
基板………………………………………………………………15
樣品………………………………………………………………15
緩衝液……………………………………………………………15
成像環境…………………………………………………………15
2-5 實驗操作方法………………………………………………18
2-5.2 製備修飾基板………………………………………………18
精胺(spermine)-雲母片的製備………………………….18
2-5.2 生物樣品配置………………………………………………18
DNA溶液…………………………………………………..18
Plasmid DNA之限制酶切割……………………………..19
DNA fragments extraction kit……………………….20
2-5.3 製作生物樣品基板………………………………………..21
DNA分子…………………………………………………..21
稀薄濃度的酶/核酸複合體………………………………22
液相槽即時動態追蹤之酶/核酸反應……………………23
2-6 實驗分析量測………………………………………………23
第參章 掌握原子力顯微鏡之偵測效能…………………………25
3-1 基板…………………………………………………………25
3-2 液相下輕敲式原子力顯微鏡操作變因研究………………28
3-2.1 固定DNA…………………………………………………..28
3-2.2 懸臂驅動頻率對成像的影響…………………………….30
3-2.3 選擇Setpoint amplitude……………………………….32
3-2.4 修正回饋訊號…………………………………………….33
第肆章 酶與核酸之交互作用……………………………………...35
4-1 限制酶與限制酶/核酸複合體…………………………….35
4-2 限制酶切割雙股DNA in vitro之AFM成像研究………….38
4-2.1 Ssp I切割環型plasmid pUC19 DNA之成像…………….39
4-2.2 Ssp I及EcoR I先後切割環型plasmid pUC19 DNA之成像.42
4-2.3 Ssp I-linerized pUC19 DNA/EcoR I複合體之成像….44
4-2.4 Ssp I-linerized pUC19 DNA/EcoR V複合體之成像….51
4-3 AFM即時動態觀測限制酶與雙股DNA作用…………………54
第伍章 結論………………………………………………………….60
參考文獻……………………………………………………………….62
參考文獻 References
1.Binning, G.; Quate, C. F.; Gerber, C. Phys. Rev. Latt. 1986, 56, 930: Atomic force micryscopy.
2.Hansma, H. G.; Bezanilla, M.; Zenhausern, F. Adrian, M.; Sinsheimer, R. L. Nucleic Acids Res. 1993, 21, 505: Atomic force microscopy of DNA in aqueous solutions.
3.Samori, B.; Siligardi, G.; Quagliariello, C.; Weisenhorn, A. L.; Vesenka, J.; Bustamante, C. J. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 3598: Chirality of DNA supercoiling assigned by scanning force microscopy.
4.Hansma, H. G.; Browne, K. A.; Bezanilla, M.; Bruice, T. C. Biochemistry 1994, 33, 8436: Bending and straightening of DNA induced by the same ligand: characterization with the atomic force microscope.
5.Piestrasanta, L. I.; Schaper, A.; Jovin, T. M. Nucleic Acids Res. 1994, 22, 3288: Probing specific molecular conformations with the scanning force microscope. Complexes of plasmid DNA and anti-Z-DNA antibodies.
6.Guthold, M.; Bezanilla, M.; Jenkins, B.; Hansma, H. G.; Bustamante, C. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 12927: Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope.
7.Bezanilla, M.; Drake, B.; Nudler, E.; Kashlev, M.; Hansma, P. K.; Hansma, H. G. Biophys. J. 1994, 67, 2454: Motion and enzymic degradation of DNA in the atomic force microscope.
8.Rees, W. A.; Keller, R. W.; Vesenka, J. P.; Yang, G.; Bustamante, C. Science 1993, 260, 1646: Evidence of DNA bending in transcription complexes imaged by scanning force microscopy.
9.Lysetska, M.; Knoll, A.; Boehringer, D.; Hey, T.; Krauss, G.; Krausch, G. Nucleic Acids Research 2002, 30, 2686: UV light-damaged DNA and its interaction with human replication protein A: an atomic force microscopy study.
10.Weisenhorn, A. L.; Hansma, P. K.; Albrecht, T. R.; Quate, C. F. Appl. Phys. Lett. 1989, 54, 2651: Forces in atomic force microscopy in air and water.
11.Weisenhorn, A. L.; Maivald, P.; Butt, H.-J.; Hansma, P. K. Phys. Rev. B: Condens. Matter 1992, 45, 11226: Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope.
12.Hartmann, U. Phys. Rev. B: Condens. Matter 1991, 43, 2404: van der Waals interactions between sharp probes and flat sample surfaces.
13.Bezanilla, M.; Drake, B.; Nudler, E.; Kashlev, M.; Hansma, P. K.; Hansma, H. G. Biophys. J. 1994, 67, 2454: Motion and enzymatic degradation of DNA in the atomic force microscope.
14.Hansma, H. G.; Vesenka, J.; Siegerist, C.; Kelderman, G.; Morrett, H.; Sinsheimer, R. L.; Elings, V.; Bustamante, C.; Hansma, P. K. Science 1992, 256, 1180: Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope.
15.Zuccher, G.; Dame, R. Th.; Aquila, M.; Muzzalupo, I.; Samor, B. Appl. Phys. A 1998, 66, S585: Conformational fluctuations of supercoiled DNA molecules observed in real time with a scanning force microscopy.
16.Vesenka, J.; Guthold, M.; Tang, C. L.; Keller, D.; Delaine, E.; Bustamante, C. Ultramicroscopy 1992, 42, 1243: Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope.
17.Thundat, T.; Allison, D. P.; Warmack, R. J.; Brown, G. M.; Jacobson, K. B.; Schrick, J. J.; Ferrell, T. L. Scanning Microsc. 1992, 6, 911: Atomic force microscopy of DNA on mica and chemically modified mica.
18.Hansma, H. G.; Bezanilla, M.; Zenhausern, F.; Adrian, M.; Sinsheimer, R. L. Nucleic Acids Res. 1993, 21, 505: Atomic force microscopy of DNA in aqueous solutions.
19.Thomson, N. H.; Kasas, S.; Smith, B. Hansma, H. G.; Hansma, P. K. Langmuir 1996, 12, 5905: Reversible binding of DNA to mica for AFM imaging.
20.Kasas, S.; Thomson, N. H.; Smith, B. L.; Hansma, P. K.; Miklossy, J.; Hansma, H. G.. Int. J. Imaging Syst. Technol. 1997, 8, 151: Biological applications of the AFM: from single molecules to organs.
21.van Noort, S. J. T.; van der Werf, K. O.; Eker, A. P. M.; Wyman, C.; de Grooth, B. G.; van Hulst, N. F.; Grever, J. Biophys. J. 1998, 74, 2840: Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope.
22.Bennink, M. L.; Nikova, D. N.; Werf, K. O. van der; Greve, J. Anal. Chim. Acta 2003, 479, 3: Dynamic image of single DNA-protein interactions using atomic force microscopy.
23.汪宗興 “DNA在雲母表面上的原子力顯微術成像研究:分子構型及與拓樸異構酶I型作用探討”民國94年7月 國立中山大學化學研究所碩士論文
24.Kasas, S.; Thomson, N. H.; Smith, B. L.; Hansma, H. G.; Zhu, X. S.; Guthold, M.; Bustamante, C.; Kool, E. T.; Kashlev, M.; Hansma, P. K. Biochemistry 1997, 36, 461: Escherichia coli RNA polymerase activity observed using atomic force microscopy.
25.Drlica, K. Understanding DNA and Gene Cloning: A Guide for the Curious 2002 World of Science
26.Abdelhady, H. G.; Allen, S.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M. Nucleic Acids Res. 2003, 31, 4001: Direct real-time molecular scale visualisation of the degradation of condensed DNA complexes exposed to DNase I.
27.Rief, M.; Gautel, M.; Oesterhelt, F.; Fernander, J. M.; Gaub, H. E. Science 1997, 276, 1109: Reversible unfolding of individual titin immunoglobulin domains by AFM.
28.Marszalke, P. E.; Lu, H.; Li, H.; Carrion-Vazquez, M.; Oberhauser, A. F.; Schulten, K.; Fernandez, J. M. Nature 1999, 402, 100: Mechanical unfolding intermediates in titin modules.
29.Oberhauser, A. F.; Marszalke, P. E.; Carrion-Vazquez, M.; Fernandez, J. M. Nature Struct. Bio. 1999, 6, 1025: Single protein misfolding event captured by AFM.
30.Li, H.; Liu, B.; Zhang, X.; Gau, C.; Shen, J.; Zou, G. Langmuir 1999, 15, 2120: Single-molecule force spectroscopy on poly(acrylic acid) by AFM.
31.Lee, G. U.; Kidwell, D. A.; Colton, R, J. Langmuir 1994, 10, 354: Sensing discrete streptavidin-biotin interactions with atomic force microscopy.
32.Hansma, H. G. Annu. Rev. Phys. Chem. 2001, 52, 71: Surface biology of DNA by atomic force microscopy.
33.McKane, M.; Milkman, R. Genetics 1995, 139, 35: Transduction, restriction and recombination patterns in Escherichia coil.
34.Pingoud, A.; Jeltsch, A. Eur. J. Biochem. 1997, 246, 1: Recognition and cleavage of DNA by type-II restriction endonucleases.
35.Gowers, D. M.; Bellamy, S. R. W.; Halford, S. E. Nucleic Acids Research 2004, 32, 3469: One recognition sequence, seven restriction enzymes, five reaction mechanisms.
36.Pingoud, A.; Fuxreiter, M.; Pingound, V.; Wende, W CMLS, Cell. Mol. Life Sci. 2005, 62, 685: Type II restriction endonucleases: structure and mechanism.
37.MultimodeTM SPM Instruction Manual. 1996, Digital Instrument Inc.
38.Braet, F.; Vermijlen, D.; Bossuyt, V.; De, Z. R.; Wisse, E. Ultramicroscopy 2001, 89, 265: Early Detection of Cytotoxic Events Between Hepatic Natural Killer Cells and Colon Carcinoma Cells as Probed with the Atomic Force Microscope.
39.Tanigawa, M.; Okada, T. Anal. Chim. Acta. 1998, 365, 19: Atomic Force Microscopy of Supercoiled DNA Structure on Mica.
40.Schafer, D. A.; Gelles, J.; Sheetz, M. P.; Landick, R. Nature 1991, 352, 444: Transcription by single molecules of RNA polymerase observed by light microscopy.
41.Tang, H.; Joachim, C.; Devillers, J. J. Vac. Sci. Technol. B 1994, 12, 2179: Interpretation of atomic force microscopy images: The mica(001) surface with a diamond tip apex.
42.Lyubcheko, Y. L.; Gall, A. A.; Shlyakhtenko, L. S.; Harrington, R. E.; Jacobs, B. L.; Oden, P. I.; Lindsay, S. M. J. Biomol. Struct. Dyn. 1992, 10, 589: Atomic force microscopy imaging of double stranded DNA and RNA.
43.Bezanilla, M.; Mann, S.; Laney, D. E.; Lyubchenko, Y. L.; Hansma, H. G. Langmuir 1995, 11, 655: Adsorption of DNA to mica, silylated mica, and minerals: charaterization by atomic force microscopy.
44.Psonka, K.; Brons, S.; Heiss, M.; Gudowska-Nowak, E.; Taucher-Scholz, G.. J. Phys.: Condens. Matter 2005, 17, S1443: Induction of DNA damage by heavy ions measured by atomic force microscopy.
45.Products Catalog for Biotechnology. 2005, TaKaRa Bio Inc.
46.http://www.biochem.ucl.ac.uk/bsm/xtal/teach/rest/endo.html
47.Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis Fifth Edition 1998, Harcourt
48.Nettikadan, S.; Tokumasu, F.; Takeyasu, K. Biochem. Biophys. Res. Commun. 1996, 226, 645: Quantitative analysis of the transcription factor AP2 binding to DNA by atomic force microscopy.
49.Dahlgren, P. R.; Lyubchenko, Y. L. Biochemistry 2004, 41, 11372: Atomic force microscopy study of the effects of Mg2+ and other divalent cations on the end-to-end DNA interactions.
50.Allison, D. P.; Kerper, P. S.; Doktycz, M. J.; Spain, J. A.; Modrich, P.; Larimer, F. W.; Thundat, T.; Warmack, R. J. Proc. Natl. Acad. Sci. USA 1996, 93, 8826: Direct atomic force microscope imaging of EcoR I endonuclease site specifically bound to plasmid DNA molecules.
51.Zhu, Y.; Zeng, H.; Gao, X.; Lu, Z. Scanning 2006, 28, 15: Quantitative analysis of EcoR I methylase-DNA complex by Atomic force microscopy.
52.Halford, S. E.; Marko, J. F. Nucleic Acid Research 2004, 32, 3040: How do site-specific DNA-binging proteins find their targets?
53.Stanford, N. P.; Szczelkun, M. D.; Marko, J. F.; Halford, S. E. EMBO J. 2000, 19, 6546: One- and three-dimensional pathways for proteins to reach specific DNA sites.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.149.242
論文開放下載的時間是 校外不公開

Your IP address is 18.224.149.242
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code