Responsive image
博碩士論文 etd-0725106-201628 詳細資訊
Title page for etd-0725106-201628
論文名稱
Title
以液相沉積法備製氧化鈦薄膜於非晶矽及多晶矽之特性分析
Characterization of Liquid Phase Deposited Titanium Oxideon Amorphous and Polycrystalline Silicon
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-25
關鍵字
Keywords
氧化鈦、高介電值、非晶矽、液相沉積法、多晶矽
high dielectric, titanium oxide, poly-Si, a-Si, LPD
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
使用高介電值材料在薄膜電晶體上,可以提高閘極氧化層電容值,以獲得一個較高的開口率及汲極電流;同時需要使用低介電值材料用於各導線連接處來降低電阻-電容延遲。在本實驗中,主要採用液相沈積法來成長氧化鈦薄膜在非晶矽及多晶矽上,用來獲得一個11.76和29.54的高介電值薄膜。
Abstract
When the size of display panel increased, the RC delay of TFTs became serious. High dielectric (high-k) materials used as the gate oxide can increase the gate oxide capacitance Co, which can induce a higher drain current, and higher aperture ratio. Therefore, low-k materials are used for inter-metal dielectrics. Thus, it can improve the RC delay.
LPD-TiO2 film on a-Si and poly-Si technology and characterization of films were described in detail in this thesis. The highest dielectric constant of 11.76 and 29.54, and lowest leakage current density of 5.45×10-7A/cm2 at -0.45 MV/cm and 3.11×10-1 A/cm2 at 0.45 MV/cm for the O2-annealed of LPD-TiO2film on a-Si and poly-Si can be obtained.
目次 Table of Contents
CONTENTS
CHAPTER 1 1
Introduction 1
1-1 Background 1
1-1.1 Advantages of Active Matrix Display Liquid Crystal Display (AMLCD) 1
1-1.2 Structure of AMLCD 1
1-1.3 Comparison a-Si and poly-Si TFTs 3
1-2 Motivation 4
1-3 Properties of TiO2 5
1-4 Advantages of Liquid Phase Deposition 6
CHAPTER 2 13
EXPERIMENT 13
2-2 Deposition procedures 14
2-2.1 Cleaning of Substrate 14
2-2.2 Preparation of deposition solution 15
2-2.3 LPD-TiO2 Processes 16
2-2.4 SiO2 buffer layer Processes 17
2-3 Annealing Treatment 18
2-4 Characteristics 18
2-4.1 Physical Property 18
2-4.2 Chemical property 19
2-4.3 Electrical Properties 19
CHAPTER 3 24
RESULTS AND DISCUSSION 24
Part A: LPD-TiO2 films deposited on a-Si/P-Si and poly-Si/P-Si by (NH4)2TiF6 solution 24
3-1 Mechanism of LPD-TiO2 film 24
3-2 LPD-TiO2 deposited on a-Si/P-Si 25
3-2-1 Physical Characteristics 25
3-2-2 Chemical Characteristics 27
3-2-3 Electrical Characteristics 29
3-3 LPD-TiO2 deposited on poly-Si 34
3-3-1 Physical Characteristics 34
3-3-2 Chemical Characteristic 35
3-3-3 Electrical Characteristics 37
Part B: LPD-TiO2 films deposited on a-Si/P-Si and poly-Si/P-Si by H2TiF6 solution 40
3-4 Mechanism of LPD-TiO2 film 40
3-5 LPD- TiO2 deposited on a-Si 40
3-5-1 Physical Characteristics 41
3-5-2 Chemical Characteristics 42
3-5-3 Electrical Characteristics 42
3-6 LPD- TiO2 deposited on poly-Si 45
3-6-1 Physical Characteristics 45
3-6-2 Chemical Characteristics 46
3-6-3 Electrical Characteristics 47
CHAPTER 4 85
參考文獻 References
[1] Teruhiko. Y, Hideaki. Ki, Hiroo. H: Color TFT liquid crystal displays,(SEMI Standard FPD Technology Group)
[2] M. Ikeda, M. Ogawa, K Suzuki. in Proc. Japan Display 498, 1989.
[3] J. H. Lan, J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin film transistors for AM-LCDs,” IEEE electron Device Lett, vol. 20, pp. 129-131, 1999.
[4] S. Sivoththaman, R. Jeyakumar, L.Ren A. J. Nathan, “Characterization of low permittivity (low-k) polymeric dielectric films for low temperature device integration,” Vac. Sci. Technol. A, vol. 20, pp. 1149-1153, 2002.
[5] O. Auciello, W. Fan, B. Kabius, S. Saha, J. A. Carlisle, R. P. H. Chang, C. Lopez, E. A. Lrene and R. A. Baragiola, “Hybrid titanium-aluminum oxide layer as alternative high-k gate dielectric for the next generation of complementary metal-oxide-semiconductor devices,” Appl. Phys. Lett, vol. 86. pp. 042904, 2005.
[6] W. Benzarti., F. Plais, A. De Luca, D. Pribat “Compact analytical physical-based model of LTPS TFT for active matrix” Electron Devices, IEEE Transactions, vol. 51, pp. 345-350, 2004
[7] N. Raush, E. P. Burte, “ Thin High-Dielectric TiO2 films prepared by l ow pressure MOCVD,” Engineering, vol. 19, p.725, 1992.
[8] T. Fuyuki and H. Matsunami, “ Electronic Properties of the Interface between Si and TiO2 Deposited at Very Low,” Jpn. J. Appl. Phys. 25, 1288, 1986.
[9] J. P. Rino, and N. Studart, “Sturcture correlations in titanium dioxide ,” Phys. Rev.B, vol.59, no. 10, pp. 6643-6649, 1999.
[10] A. L. Linsebigler, G. Lu, J. T. Yates, Jr, “ Photocatalysis on TiO2 Surfaces : Principles, Mechanisms, and Seclected Results,” Chem.Rev. vol. 95, pp.735-758, 1995
[11] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, F. Levy, “ Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Phys. vol. 75, pp.2042-2047, 1994.
[12] N. Daude, C. Gout, C. Jouanin , “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol.15, p.3299, 1997.
[13] G. S. Brady, H. R. Clauser: Materials Handbook, 13th ed. (McGraw hill, New York 1991)
[14] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical.Chem, vol. 428, pp.25-32, 1997.
[15] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, ”Rutile-type TiO2 thin film for high-K gate insulator,” Thin Solid Films, vol. 424, pp. 224-228, 2003.
[16] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[17] J. M. Criado, C.Real, and J. Soria, “Study of Mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid state Ionics ,vol. 32, pp.461-465, 1989.
[18] R. D. Shannon, and J. A. PAsk, J. Am. Ceram. Soc., vol.48, p.391, 1965.
[19] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “ Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[20] T. M. Wang, S. K. Zeng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method ,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[21] G. A. Battiston, R. Gerbsi, A.Gregori, M. Porchia, S.Cattarin,and G.A.Rizzi,”PECVD of amorphous TiO2 thin films:effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, p. 126, 2000.
[22] M. Tachiki,.; M. Noda,.; K. Yamada,.; T. Kobayashi,” SrTiO3 films epitaxially grown by eclipse pulsed laser deposition and their electrical characterization,” J. Appl. Phys., vol.83, pp. 5351-5357, 1998
[23] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp.63-67, 1998.
[24] C. K. Ong, S. J. Wang “In-situ RHEED monitor of the grown of epitaxial anatase TiO2 thin-films, ” Appl. Surf. Sci, vol. 185, pp. 47-51, 2001.
[25] H. Nagayama, H. Honda, H. Kawahara, “A New Process for Silica Coating ”, J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1998.
[26] C. F. Yeh, S. S. Lin, and T. Y. Hong, “Low-Temperature Processed MOSFET with Liquid-Phase Deposited Si2-xFx as Gate Insulate,” IEEE Electron Device Letters, vol. 16, pp. 316-318, 1995.
[27] C. F. Yeh, S. S. Lin, C. L. Chen ,and Y. C. Yang, IEEE Electron Device Letters, vol. 14, pp. 403-405, 1993.
[28] Y. Gao, Y. Masuda, and K. Koumoto “Microstructure-controlled deposition of SrTiO3 thin film on self-assembled monolayers in an aqueous solution of (NH4)2TiF6-Sr(NO3)2-H3BO3”, Chem. Mater, vol. 15, pp. 2399-2410, 2003.
[29] Y. Gao, Masuda. Y, T. Yonezawa. T, K. Koumoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled Mmonolayers by the liqid phase deposition mothod ”, Chem. Mater, vol. 14, pp. 5006-5014, 2002.
[30] C. A. Wamser, “Equilibria in system Boron Trifuoride,” J. Am. Chem. Soc , vol. 73, p. 409, 1951.
[31] M. K. Lee, W. H Shieh, C. M Shih, K. W Tung, “High-quality nitrogen-doped fluorinated silicon oxide films prepared by temperature-difference-based liquid-phase deposition,” J. Phys. Chem. B, vol. 107, pp. 12700-12704, 2003.
[32] Y. Gao, Masuda. Y, T. Yonezawa. T, K. Koumoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled Mmonolayers by the liqid phase deposition mothod,” Chem. Mater, vol. 14, pp. 5006-5014, 2002.
[33] F. Zhang, S. Jim, Y. Mao, Z. Zheng, Y. Chen, X. Liu, “Surface characterization of titanium oxide films synthesized by ion beam enhanced deposition ,” Thin Solid Films, vol. 310, pp. 29-33. 1997.
[34] S. Kaciulis, G. Mattogno, A. Napoli, E. Bemporad, F. Ferrari, A. Montenero, G. Gnappi. “Surface analysis of biocompatible coatings on titanium,” J. Electron Spectrosc. Relat. Phenom.; vol. 95, no.1 pp.61-69, 1998.

[35] M. K.Lee, J. J. Huang, T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 films” Electrochem. solid-State Lett. vol. 8 pp. F8-F11, 2005.
[36] W. D. Brown, W. W. Grannemann, “C–V characteristics of metal–titanium dioxide–silicon capacitors,” Solide-Sate Electron., vol.21, pp. 837-846, 1978.
[37] B.C. Kang, S.B. Lee, and J. H. Boo, “Growth of TiO2 thin films on Si (100) substrates using single molecular precursors by metal organic chemical vapor deposition” Surface and Coatings Technology, vol. 131, pp. 88-92, 2000.
[38] D. F. Cox, T. B. Fryberger, S. Semancik, “Oxygen vacancies and efect electronic states on the SnO2(110)-1×1 surface” Phys. Rev. B vol. 38, pp. 2072-2083, 1988.
[39] C. F. Yeh, S. S. Lin, C. L. Fan, “Thinner liquid phase deposited oxide for polysilicon thin-film transistors,” IEEE electron Device Lett. vol.16, pp. 473-475, 1995.
[40] C. J. Huang, “Proper annealing for enhanced quality of silicon dioxide thin film on gallium-arsenide” Electrochem. and solid-State Lett, vol. 4, pp. F21-F23, 2001.

[41] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Mainamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jap. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000

[42] X. H. Xu, M. Wamg, Y. Hou, S. R. Zhao, H.Wang, D. Wang, S. X. Shang. “Effect of Thermal Annealing on Structural Properties, morphologies and Electrical properties of TiO2 thin film Grown by MOCVD,” Cryst. Res. Technol, vol. 37, pp.431-439, 2002.
[43] T. Homma, T. Katoh, Y. Yamada, Y. Murao, “A selective SiO2 film-formation technology using liquid-phase deposition for fully planarized multilevel,” J. Electrochem. Soc, vol. 140, pp. 2410-2414, 1993.
[44] J. S. Chou, S. C. Lee, J. Electrochem. Soc. Vol. 141, pp. 3214. 1994

[45] S. C. Sun, T. F. Chen, “Effects of electrode materials and annealing ambients on the electrical properties of TiO2 thin films by metalorganic chemical vapor deposition,” Jan. J. Appl. Phys, vol. 36, pp.1346-1350, 1997.
[46] J. Shin, S. Jeon, H. Hwang, J.Electronanalytical Chem. vol. 147, pp. F1-F3, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.220.41.140
論文開放下載的時間是 校外不公開

Your IP address is 44.220.41.140
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code