Responsive image
博碩士論文 etd-0725107-143209 詳細資訊
Title page for etd-0725107-143209
論文名稱
Title
應用於感知無線電網路下之隨機跳頻技術
Random Hopping for Cognitive Radio Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-18
繳交日期
Date of Submission
2007-07-25
關鍵字
Keywords
感知無線電網路、IEEE 802.22、頻譜機會存取
IEEE 802.22, Opportunistic Spectrum Access, Cognitive Radio Networks
統計
Statistics
本論文已被瀏覽 5646 次,被下載 0
The thesis/dissertation has been browsed 5646 times, has been downloaded 0 times.
中文摘要
近年來,隨著無線通訊技術的快速發展,無線電頻譜變成了一項相當珍貴的資源。然而許多研究與報告指出了非有效率使用頻譜的問題。感知無線電技術於是被發展來解決此問題,此技術將使各種無線系統能自行尋找及連接當地閒置的無線電頻譜,來為使用者提供最佳服務。感知無線電收發信號時,會依照需求進出空閒頻帶,避開已經使用的頻帶。

感知無線電網路中,最重要的目標是如何提高頻帶的利用度卻又盡量不影響到主要使用者。在這篇論文中,我們考慮一覆蓋在主要使用者網路上之分散式次要使用者網路模型來分析在感知無線電網路中主要使用者與次要使用者共存下,對於系統效能以及主要使用者的影響。在感知系統中,由於雜訊與衰減效應的存在,感測錯誤是無法避免的,因此我們針對不同感測錯誤率環境下所造成的效能差異做比較。我們也提出一個隨機跳頻的方法,讓次要使用者在系統中在經過一隨機時間後,便重新偵測系統頻道狀況,藉此有效降低主要使用者被次要使用者干擾的時間比率,並進一步研究影響效能的因素。
Abstract
Recently, with the fast development of wireless communications, the radio spectrum becomes a precious natural resource. Many researches and reports reveal the problems of inefficient spectrum utilization. Cognitive Radio (CR) technology is now developing for solving this critical problem. This technology will enable various kinds of wireless systems to look for and connect radio frequency spectrum that the locality leave unused by oneself, to offer the best service to user. The CR will pass in and out the idle frequency band according to the demand while receiving and dispatching the signal, avoid the frequency band that has been already used.

In CR network, the objective is to maximize the throughput of secondary users while limiting the probability of colliding with primary users below a prescribed level. In this paper, we consider a distributed secondary networks model where users seek spectrum opportunities independently that overlaying the primary networks to analyze the system performance and the effect to the primary users with the existence of both primary users and secondary users under the cognitive radio networks. In the cognitive system, due to the existence of noise and fading effect, error detection cannot be avoided. Therefore, we made a comparison to the difference of the efficiency among environments of different probability of miss detection. We also propose a random hopping method for all secondary users in system will re-sensing after a random period of time. Hereby, efficiently decreases the ratio of time that influences the primary users by the secondary users, and further research the factor that influences its efficiency.
目次 Table of Contents
第一章 緒論 8
1.1 研究背景與動機 8
1.2 論文架構 11
第二章 相關研究 12
2.1 無線技術的發展 12
2.2 階層式動態頻譜存取 14
2.2.1 超寬頻 16
2.2.2 感知無線電 16
2.3 頻譜機會存取 19
2.3.1 頻道機會偵測 19
2.3.2 感測錯誤 21
第三章 系統架構 25
3.1 模型架構 25
3.2 使用者機率模型 27
3.2.1 主要使用者機率模型 27
3.2.2 次要使用者機率模型 27
3.3 系統效能計算 29
3.3.1 主要使用者平均被次要使用者遮蓋的時間比率 29
3.3.2 次要頻道的平均利用度 29
第四章 模擬結果與分析 31
4.1 模擬環境與參數 31
4.2 感知無線電環境 33
4.3 隨機跳頻技術 38
4.3.1 隨機跳頻演算法 38
4.3.2 模擬結果 42
4.3.3 偵測錯誤率的影響 46
4.3.4 隨機跳頻頻率的影響 51
第五章 結論 54
參考文獻 55
參考文獻 References
[1] FCC Spectrum Policy Task Force, “FCC report of Spectrum Efficiency Working Group,” Nov. 2002, http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf
[2] Natasha Devroye, Patrick Mitran, and Vahid Tarokh, “Limits on Communications in a Cognitive Radio Channel,” IEEE Communications Magazine, June 2006, pp.44-49
[3] Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, and Shantidev Mohanty, “NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey,” Computer Networks, Vol. 50, 2006, pp.2127-2159.
[4] J. Mitola, “The Software Radio Architecture,” IEEE Commun.Mag., vol. 33, no. 5, May 1995, pp. 26–38.
[5] S. Haykin, Cognitive radio: brain-empowered wireless communications,IEEE Journal on Selected Areas in Communications 23 (2) (2005) 201–220.
[6] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc. of IEEE International Workshop on Mobile Multimedia Communications (MoMuC), pp. 3 - 10, Nov. 1999.
[7] H. Zheng and C. Peng, “Collaboration and fairness in opportunistic spectrum access,” in Proc. of IEEE International Conference on Communications, vol. 5, pp. 3132 - 3136, May 2005.
[8] W. Wang and X. Liu, “List-coloring based channel allocation for open-spectrum wireless networks,” in Proc. of IEEE 62nd Vehicular Technology Conference (VTC-Fall), vol. 1, pp. 690 - 694, Sept. 2005.
[9] M. E. Steenstrup, “Opportunistic use of radio-frequency spectrum: a network perspective,” in Proc. of the First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 638 - 641, Nov. 2005.
[10] P. Papadimitratos, S. Sankaranarayanan, and A. Mishra, “A bandwidth sharing approach to improve licensed spectrum utilization,” IEEE Communications Magazine, vol. 43, pp. 10-14, Dec. 2005.
[11] Q. Zhao, L. Tong, and A. Swami, “Decentralized cognitive MAC for dynamic spectrum access,” in Proc. of the First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 224 - 232, Nov. 2005.
[12] Y. Chen, Q. Zhao, and A. Swami, “Distributed cognitive MAC for energy-constrained opportunistic spectrum access,” in Proc. of MILCOM, Washington, DC, pp. 1 - 7, Oct. 2006.
[13] Q. Zhao, S. Geirhofer, L. Tong, and B. M. Sadler, “Optimal dynamic spectrum access via periodic channel sensing,” to appear in Proc. of WCNC, 2007.
[14] Q. Zhao and B. Sadler, “A survey of dynamic spectrum access: signal processing, networking, and regulatory policy,” to appear in IEEE Signal Processing Magazine, May 2007.
[15] V. Brik, E. Rozner, S. Banarjee, P. Bahl, DSAP: a protocol for coordinated spectrum access, in: Proc. IEEE DySPAN 2005, November 2005, pp. 611–614.
[16] C. Raman, R.D. Yates, N.B. Mandayam, Scheduling variable rate links via a spectrum server, in: Proc. IEEE DySPAN 2005, November 2005, pp. 110–118.
[17] S.A. Zekavat, X. Li, User-central wireless system: ultimate dynamic channel allocation, in: Proc. IEEE DySPAN 2005, November 2005, pp. 82–87.
[18] L. Cao, H. Zheng, Distributed spectrum allocation via local bargaining, in: Proc. IEEE Sensor and Ad Hoc Communications and Networks (SECON) 2005, September 2005, pp. 475–486.
[19] J. Huang, R.A. Berry, M.L. Honig, Spectrum sharing with distributed interference compensation, in: Proc. IEEE DySPAN 2005, November 2005, pp. 88–93.
[20] L. Ma, X. Han, C.-C. Shen, Dynamic open spectrum sharing MAC protocol for wireless ad hoc network, in: Proc. IEEE DySPAN 2005, November 2005, pp. 203–213.
[21] S. Sankaranarayanan, P. Papadimitratos, A. Mishra, S. Hershey, A bandwidth sharing approach to improve licensed spectrum utilization, in: Proc. IEEE DySPAN 2005, November 2005, pp. 279–288.
[22] A. Sahai, N. Hoven and R. Tandra, “Some fundamental limits on cognitive radio,” in Proc. of Allerton Conference on Communication, Control, and Computing, Oct. 2004.
[23] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Proc. of the 38th. Asilomar Conference on Signals, Systems, and Computers, pp. 772 – 776, 2004.
[24] K. Challapali, S. Mangold, and Z. Zhong, “Spectrum agile radio: detecting spectrum opportunities,” in International Symposium on Advanced Radio Technologies, 2004.
[25] B. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio applications,” in Proc. of the First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 124 - 130, Nov. 2005.
[26] A. Ghasemi and E. Sousa, “Collaborative spectrum sensing for opportunistic access in fading environments,” in Proc. Of the First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, pp. 131 - 136, Nov. 2005.


[27] Q. Zhao, L. Tong, A. Swami, and Y. Chen “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,” To appear in IEEE Journal on Selected Areas in Communications, vol. 25, no. 3, Apr. 2007.
[28] Y. Chen, Q. Zhao, and A. Swami "Joint Design and Separation Principle for Opportunistic Spectrum Access," in Proc. of IEEE Asilomar Conference on Signals, Systems, and Computers, November, 2006
[29] Q. Zhao, L. Tong, and A. Swami, “A Cross-Layer Approach to Cognitive MAC for Spectrum Agility,” in Proc. of Asilomar Conference on Signals, Systems, and Computers, Nov. 2005.
[30] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework,” to appear in IEEE Journal on Selected Areas in Communications: Special Issue on Adaptive, Spectrum Agile and Cognitive Wireles Networks.
[31] B. Wild and K. Ramchandran, “Detecting primary receivers for cognitive radio applications,” in Proc. of IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Nov. 2005.
[32] A. Sahai and N. Hoven and R. Tandra, “Some fundamental limits on cognitive radio,” in Proc. Allerton Conference on Communication, Control, and Computing, October 2004.
[33] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Proc. the 38th. Asilomar Conference on Signals, Systems, and Computers, pp. 772 – 776, 2004.
[34] A. Ghasemi and E. Sousa, “Collaborative Spectrum Sensing for Opportunistic Access in Fading Environments,” in Proceedings of the first IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005.
[35] S. Mishra, A. Sahai, and R. Brodersen, “Cooperative sensing among cognitive radios,” in submitted to ICC, 2006.
[36] H. Zheng and C. Peng, “Collaboration and Fairness in Opportunistic Spectrum Access,” in Proceedings of IEEE International Conference on Communications (ICC), 2005.
[37] W. Wang and X. Liu, “List-coloring based channel allocation for open-spectrum wireless networks,” in Proc. of IEEE VTC, 2005.
[38] M. Halldorsson, J. Halpern, L. Li, and V. Mirrokni, “On spectrum sharing games,” in Proc. of the 23rd Annual ACM Symposium on Principles of Distributed Computing, pp. 107–114, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.189.177
論文開放下載的時間是 校外不公開

Your IP address is 3.144.189.177
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code