Responsive image
博碩士論文 etd-0725107-195949 詳細資訊
Title page for etd-0725107-195949
論文名稱
Title
有關無窮矩陣之項滿足某些二冪次遞迴公式的討論
On infinite matrices whose entries satisfying certain dyadic recurrent formula
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
22
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-15
繳交日期
Date of Submission
2007-07-25
關鍵字
Keywords
有界矩陣、斜扥普立茲算子、二冪次遞迴公式、位移算子、可分希爾伯特空間
slant Toeplitz operator, shift operator, separable Hilbert space, bounded matrix, dyadic recurrent formula
統計
Statistics
本論文已被瀏覽 5793 次,被下載 0
The thesis/dissertation has been browsed 5793 times, has been downloaded 0 times.
中文摘要
設(b$_{i,j}$)是一個定義在 extit{ l}$^{2}$上的有界矩陣,$BbbT={zinBbb C:|z|=1}$,A是一個在L$^{2}(mathbb{T)}$上的有界矩陣滿足下列情形
1.$langle Az^{2j},z^{2i}
angle =sigma ^{-1}b_{ij}+|alpha
|^{2}sigma ^{-1}langle Az^{j},z^{i}
angle $

2.$langle Az^{2j},z^{2i-1}
angle =-alpha sigma
^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i}
angle $

3.$langle Az^{2j-1},z^{2i}
angle =-overline{alpha }sigma
^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle
Az^{j},z^{i}
angle $

4.$langle Az^{2j-1},z^{2i-1}
angle =|alpha |^{2}sigma
^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i}
angle $

對於所有$i,jin mathbb{Z}$, 其中$sigma =1+|alpha
|^{2},,alpha in mathbb{C},alpha
eq0$

上述情形給了我們一個二冪次遞迴關係。下圖表示矩陣第$ij$項如何生成對應的二乘二的區塊的項 {$a_{2i,2j}, a_{2i-1,2j}, a_{2i,2j-1}, a_{2i-1,2j-1}$ }

egin{figure}[hp]
egin{center}
includegraphics[scale=0.42]{cubic.pdf}
end{center}
caption{此二幕次遞迴的形式} end{figure}
由於[2]中可知$displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast
n}$, 其中
$ Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$

$ B=sum sum b_{ij}(u_{i}otimes u_{j})$ ;;; which
$u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z)$
則我們可以用它來求出符合上述情形的$a_{ij}$的明確公式。
Abstract
Let (b$_{i,j}$) be a bounded matrix on extit{ l}$^{2}$, $Bbb
T={zinBbb C:|z|=1}$, and A be a bounded matrix on L$^{
2}(mathbb{T)}$ satisfying the conditions

1.$langle Az^{2j},z^{2i}
angle =sigma ^{-1}b_{ij}+|alpha
|^{2}sigma ^{-1}langle Az^{j},z^{i}
angle $;

2.$langle Az^{2j},z^{2i-1}
angle =-alpha sigma
^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i}
angle $;

3.$langle Az^{2j-1},z^{2i}
angle =-overline{alpha }sigma
^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle
Az^{j},z^{i}
angle$;

4.$langle Az^{2j-1},z^{2i-1}
angle =|alpha |^{2}sigma
^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i}
angle $

hspace{-0.76cm} for all $i,jin mathbb{Z}$, where $sigma
=1+|alpha |^{2},,alpha in mathbb{C},alpha
eq0$.

The above conditions evidently suggests that there is a "dyadic"
relation in the entries of $A$. Here in the following picture
illustrates how each $ij-$th entry of $A$ generates the 2 by 2 block
in $A$ with entries ${a_{2i 2j}, a_{2i-1 2j}, a_{2i 2j-1},
a_{2i-1 2j-1}}.$ vspace{-0.3cm}
egin{figure}[hp]
egin{center}
includegraphics[scale=0.42]{cubic.pdf}
end{center}
vspace{-0.8cm}caption{The dyadic recurrent form} end{figure}

It has been shown [2] that $displaystyle A=sum_{n=0}^{infty
}S^{n}BS^{ast n}$, where $Sz^i=sigma ^{-1/2}(overline{alpha
}z^{2i}+z^{2i-1})$ and $$B=sumlimits_{i=-infty}^infty
sumlimits_{j=-infty}^infty b_{ij}(u_{i}otimes u_{j}),
u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z).$$
In this paper, we shall use the above relations to compute $langle
a_{i,j}
angle $ explicitly.

ewline

Key words: shift operator, bounded matrix, dyadic recurrent formula,
slant Toeplitz operator, separable Hilbert space


2.$langle Az^{2j},z^{2i-1}
angle =-alpha sigma
^{-1}b_{ij}+alpha sigma ^{-1}langle Az^{j},z^{i}
angle $

3.$langle Az^{2j-1},z^{2i}
angle =-overline{alpha }sigma
^{-1}b_{ij}+overline{alpha }sigma ^{-1}langle
Az^{j},z^{i}
angle $

4.$langle Az^{2j-1},z^{2i-1}
angle =|alpha |^{2}sigma
^{-1}b_{ij}+sigma ^{-1}langle Az^{j},z^{i}
angle $

for all $i,jin mathbb{Z}$, where $sigma =1+|alpha
|^{2},,alpha in mathbb{C},alpha
eq0$
egin{figure}[hp]
egin{center}
includegraphics[scale=0.42]{cubic.pdf}
end{center}
caption{The dyadic recurrent form} end{figure}

Since it has been
shown [2] that $displaystyle A=sum_{n=0}^{infty }S^{n}BS^{ast
n}$, where

$ Sz^i=sigma ^{-1/2}(overline{alpha }z^{2i}+z^{2i-1})$

$ B=sum sum b_{ij}(u_{i}otimes u_{j})$ ;;; which
$u_{i}(z)=sigma ^{-1/2}z^{2i-1}(alpha -z)$


Then we can use it to compute $langle Az^{j},z^{i}
angle $
explicity if A satisfies the previous condition.

ewline

Key words: shift operator, bounded matrix, dyadic recurrent formula,
slant Toeplitz operator, separable Hilbert space
目次 Table of Contents
1 Introduction -------------------------------------iv
2 The operators that constant with S ------vii
參考文獻 References
[1] Mark C. Ho, Adjoint of slant Toeplitz operators II, Integral Equations and Operator Theory,
2001(41),pp.179-188 .
[2] Mark C. Ho and Mu Ming Wong, Operators that commute with slant Toeplitz operators,
submitting .
[3] R. Bowen, Equilibrium State and the Ergodic Theory of Anosov Diffeomorphism, Lecture
Notes in Mathematics, no. 470, Springer-Verlag, Berlin, New York, 1975.
[4] D. Chen and X. Zheng, Spectral radii and eigenvalues of subdivision operators, preprint.
[5] A. Cohen and I. Daubechies, A stability criterion for biorthogonal wavelet bases and their
related subband coding scheme, Duke Math. J., 68, no. 2, 1992, pp.313-335.
[6] A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions,
Revista Mathematica Iberoamericana, 12, 1996, pp.527-591.
[7] J.B. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs,
36, American Mathematical Society, Providence, 1991.
[8] I. Daubechies, I. Guskov and W. Sweldens, Regularity of irregular subdivision, Constructive
Approximation, 15, no. 3, 1999, pp.381-426.
[9] M. Ho, Adjoints of slant Toeplitz operators, Integral Equations and Operator Theory, 29,
1997, pp.301-312.
xvi
[10] M. Ho, Adjoints of slant Toeplitz operators II, Integral Equations and Operator Theory,
41, 2001, pp.179-188.
[11] M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University
Press, New York, 1985.
[12] G. Strang, Eigenvalues of (#2)H and convergence of the cascade algorithm, IEEE Trans.
Sig. Proc., 1996.
[13] W. Sweldens and P. Schr¨oder, Building your own wavelets at home, Wavelets in Computer
Graphics, ACMSIGGRAPH Course Notes, 1996.
[14] L. Villemoes, Wavelet analysis of refinement equations, SIAM J. Maths. Analysis, 25, no.
5, 1994, pp.1433-1460.
[15] P. Walters, An Introduction to Ergodic Theory, Graduate Text in Mathematics, 79,
Springer-Verlag, New York, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.246.193
論文開放下載的時間是 校外不公開

Your IP address is 3.135.246.193
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code