Responsive image
博碩士論文 etd-0725108-124100 詳細資訊
Title page for etd-0725108-124100
論文名稱
Title
低介電材料銅導線在機械應力下之電性機制研究
Study on electrical mechanism of low-k material and copper interconnection under various mechanism stresses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-27
繳交日期
Date of Submission
2008-07-25
關鍵字
Keywords
漏電機制、應力、多層金屬導體連線、低介電材料
Low-k material, Leakage current mechanism, Multilayer metal conductor line
統計
Statistics
本論文已被瀏覽 5695 次,被下載 0
The thesis/dissertation has been browsed 5695 times, has been downloaded 0 times.
中文摘要
由於半導體製程的日益進步,為了建構高效能的積體電路,元件的尺寸愈縮愈小,配合元件縮小及所增加的內連線(Interconnects),超大型積體電路技術所採用多層金屬導體連線的設計。然而,隨著金屬導線層的數目增加及導線間的距離不斷縮小,電子訊號在金屬連線間傳送時,由於金屬連線內連線間的電阻-電容延遲(RC delay),半導體元件速度無法提升。為了降低訊號傳遞的時間延遲,現今的發展是以較低電阻的金屬銅(電阻率為1.7μΩ-cm)來取代金屬鋁(電阻率為2.7μΩ-cm)成為導線的連線系統,以及降低電容,採用低介電(low-k)材料取代二氧化矽(SiO2)。
由於元件封裝過程中會產生的機械應變,本論文探討了元件受機械應變後的電容變化與漏電流機制。本論文探討具有金屬-絕緣體-金屬 (Metal-Insulator-Metal,MIM)結構的導線元件電容與漏電流變化機制。其中OSG(Organosilicate glass)層的低介電材料為含氧碳化矽膜(SiCO),及量測電性用的元件結構為梳狀結構銅金屬導線。為了讓元件產生應變,利用外界機械應力來彎曲試片。選擇以不同曲率半徑模具,使得試片做不同程度之彎曲形變,與未受機械應力之試片結果比較,分析在高溫的環境下之I-V與C-V特性。
本論文研究發現,受機械應力之樣品漏電機制方面並無明顯變化,但在E1/2超過1800 V/cm1/2高電場時,同時具有Schottky與Poole Frenkel兩種漏電機制共存的現象,兩種機制同時存在於樣品中;在高溫時,Poole Frenkel漏電機制會加強。
在室溫時,隨著張應力增加電容值會下降,壓應力增加時,電容值會上升。利用文獻公式可算出元件受到外加機械應力時能障改變量,與文獻是有相同趨勢,受到張應力時能障變小,受壓應力時能障變大。在樣品之活化能變化部分也有相同之趨勢。
Abstract
In order to construct the integrated circuit with high efficiency, the size of the semiconductor devices becomes smaller and smaller. The surface of the chip is unable to offer enough area for devices interconnecting, that the Ultra Large Scale Integration (ULSI) has to adopt the construction of multilayer metal conductor line, and to decrease it’s connects. However, the RC delay time becomes a main issue to limiting semiconductor speed when the electron signal was transferred between two metal connects. In order to solve the problem of RC delay, and to lower resistivity, copper (1.7 μΩ-cm) is applied instead of Aluminum (2.7 μΩ-cm) at present. In
additation, to lower the capacitance, the low-k material has taken place SiO for
reducing the electric capacity.
In this work, the capacitance and current of MIM(Metal-Insulator-Metal) of
interconnecting circuit were investigated under bending stress. SiOC of OSG
(Organic silicate glass) layer has applied to a MIM structure. In order to apply the
strain in devices, the device was bended to a fixed curvature for compressed and
tensile stress. By bending the device, the capacitance and leakage current I-V & C-V
were analyzed and compared with the unstressed SAMPLE of I-V and C-V at high
temperature, too.
The result reveals both of Schottky and Poole-Frenkel conduction mechanism
existing in device under a high electric field of 1800 V/cm1/2, which indicates the
theoretical treatment is unappropriate for the interpretation of the leakage current
mechanism.
目次 Table of Contents
致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 背景 1
1.2 多層導體連線製程 3
1.3 鑲嵌結構製程 4
1.3.1 優先溝渠(Trench First)製程 5
1.3.2 優先管洞 (Via First)製程 6
1.3.3 自我對準式(Self-Aligned)製程 7
1.4 研究動機 7
第二章 基礎理論 9
2.1 漏電機制 9
2.1.1 歐姆電流(Ohmic Current) 9
2.1.2 蕭基發射(Schottky emission) 10
2.1.3 普爾-法蘭克(Pool-Frenkel)效應 11
2.1.4 空間電荷限制電流(Space-Charge Limited Current) 13
2.2 外加應力對能障影響 14
第三章 實驗儀器量測原理與實驗步驟介紹 15
3.1 試片金屬層結構與尺寸參數 15
3.2 研磨實驗步驟 15
3.3 室溫基板彎曲量測: 16
3.3.1. 升溫基板彎曲量測: 17
第四章 結果與討論 18
4.1 受機械應力下之室溫I-V特性 18
4.1.1 SD樣品室溫I-V特性 18
4.1.2 DD樣品室溫I-V特性 19
4.2 室溫下彎曲應力對電容之影響 21
4.2.1 SD樣品室溫下之電容特性 21
4.2.2 DD樣品室溫下之電容特性 23
4.3 受機械應力下之室溫漏電機制 26
4.4 變溫對電性之影響 27
4.5 複合漏電機制探討 30
第五章 結論 33
第六章 參考資料 35
附錄一 70
附錄二 72
參考文獻 References
[1] 張勁燕,”深次微米矽製程技術”, 五南圖書出版公司, 2002, pp226
[2] L. Peters, “Pursuing the perfect low-k dielectric”, Semiconductor International, vol. 21, Sept. 1998, pp.64
[3] 施敏著,黃調元譯,”半導體元件物理與製作技術”, 交大出版社, 2002, pp579
[4] T.C. Wang , Y.L. Cheng, Y.L. Wang , T.E. Hsieh, G.J. Hwang, C.F. Chen , “Comparison of characteristics and integration of copper diffusion-barrier dielectrics”, Thin Solid Films, Vol.498, 2006, pp.36-42
[5] Hartfield, C.D. Ogawa, E.T. Young-Joon Park Tz-Cheng Chiu Honglin Guo, “Interface reliability assessments for copper/low-k products”, IEEE Transactions on Device and Materials Reliability, Vol.4, 2004, pp129- 141
[6] M. A. Korhonen, P. Borgesen, K. N. Tu, and C.-Y. Li, “Stress evolution due to electromigration in confined metal lines”, J. Appl. Phys., Vol. 73, 1993, pp. 3790–3799
[7] J. Ida , M. Yoshimaru, T. Usami, A. Ohtomo, K. Shimokawa, A. Kita, M. Ino, IEEE Symp. VLSI Technol. Digest, 1994, pp.59-60
[8] T. Sakurai, “Closed-form expressions for interconnection delay, coupling and crosstalk in VLSI’s”, IEEE trans. Elec. Devices, Vol. 40, 1993, pp.118-124
[9] M. Igarashi, A. Harada, H. Amishiro, H. K awashima, N. Morimoto, Y. Kusumi, T. Saito, A. Ohsaki, T. Mori, T. Fukada, Y. Toyoda, K. Higashitani and H. Arima, IEEE IEDM Tech. Dig. , Vol. 98, 1998, pp. 829-832
[10] X. W. Lin and D. Pramanik, Solid State Technology, Vol. 41, October 1998, pp. 63-79
[11] Y.S. Obeng, S.H. Kang, J.S. Huang, A.S. Oates, X. Lin, J.S. Obeng, “Impact of post via-etch cleans on mechanical reliability of W-plug vias”, Thin Solid Films, Vol. 391, 2001, pp. 149-156
[12] 邱顯光,蔡明蒔,林鴻志,雙鑲嵌結構製作技術簡介,奈米通訊,第六卷第三期,1999年8月,pp. 36-43
[13] J. Y. Fang, M. S. Tsai, B. T. Dai, Y. S. Wu, and M. S. Feng, “Effect of Surface Passivation Removal on Planarization Efficiency in Cu Abrasive-Free Polishing”, J. Electrochem. Soc., Vol. 153, 2006, pp. 44-46
[14] 吳文發、黃麒峰,銅製程之擴散阻障層,奈米通訊,第六卷第四期,1999年11月,pp. 30-35
[15] Chiu-Chih Chiang, I-Hsiu Ko, Mao-Chieh Chen, Zhen-Cheng Wu, Yung-Cheng Lu, Syun-Ming Jang, and Mong-Song Liang, “Improvement in Leakage Current and Breakdown Field of Cu-Comb Capacitor Using a Silicon Oxycarbide Dielectric Barrier”, J. Electrochem. Soc., Vol. 151, Issue 9, 2004, pp. G606-611
[16] 劉柏村、張鼎張,低介電常數材料應用於導體連線製程技術的探討,奈米通訊,第九卷第二期,2002年5月,pp. 1-7
[17] 鐘文仁、陳佑任, “IC封裝製程與CAE應用”, 全華科技圖書出版公司, 2003, pp. 5-23
[18] 鐘文仁、陳佑任, “IC封裝製程與CAE應用”, 全華科技圖書出版公司, 2003, pp. 5-38
[19] 蔡翰輝, “晶圓級封裝在循環彎曲負載測試下之可靠度分析, 國立中山大學機械與機電工程學研究所碩士論文, 2004, pp. 5-11
[20] John H. Lau, S.-W. Ricky Lee, “Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP) ”, IEEE Transactions On Components and Packaging Technologies, Vol. 25, March 2002, pp. 3-14
[21] Lau J.H., “Critical Issues of Wafer Level Chip Scale Package (WLCSP) with Emphasis on Cost Analysis and Solder Joint Reliability”, Electronics Manufacturing Technology Symposium, Twenty-Sixth IEEE/CPMT International, 2000, pp. 33-46
[22] Kumbhat N, Raj. P.M, Pucha R.V, Atmur S, Doraiswamy R, Sundaram V, Bhattacharya S, SitaramanS.K, Tummala R.R, “Recent Advances in Ceramic “Composite Substrate Materials for High-Density and High Reliability Packaging Applications”, Electronic Components and Technology Conference, June 2005, pp.1364-1372
[23] 李雅明, “固態電子學”,全華科技圖書出版公司, 1995, pp. 414-445
[24] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley & Sons,New York 1981, pp. 402
[25] G. Bersuker, V. Blaschke, S. Choi, and D. Wick, in Proceedings of IEEE 2000 IRPS 2000, pp. 344
[26] D. F. BARBE, “Space-charge-limited current enhanced by Frenkel effect”, J. Phys. D: Appl. Phys., Vol. 4, 1971, pp. 1812-1815
[27] T. IQBAL and C. A. HOGARTH, “Space-charge-limited currents in the evaporated copolymer of polypropylene and polyethylene”, Int. J. Electronics, VOL. 65, pp953-956, 1988
[28] Po-Tsun Liu, T. M. Tsai, T. C. Chang, “Leakage conduction behavior in electron-beam-cured nanoporous silicate films”, Appl. Phys. Lett., Vol. 86,2005, pp. 182903-1~3
[29] K. L. Jensen, “Electron Emission Theory and its Application: Fowler-Nordheim Equation and Beyond”, J. Vac. Sci. Technol. B, Vol. 86, 2003, pp. 1528-1544
[30] J. G. Simmons, in L. I. Maissel and R. Glang (Eds.), Handbook of Thin Film Technology, McGraw-Hill, New York, Chap.14, 1970, pp. 25
[31] P. Hesto, in: G. Barvotlin, A. Vapaille (Eds.), Instabilities in Silicon Devices, North-Holland, Amsterdam, Ch. 5, Vol.1, 1986, pp. 263
[32] J. G. Simmons, in L. I. Maissel and R. Glang (Eds.), Handbook of Thin Film Technology, McGraw-Hill, New York, Ch. 14, 1970, pp. 28
[33] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York , Ch.7, 1981, pp.402
[34] A. W. De Groot, G. C. McGonigal, D. J. Thomson, and H. C. Card, “Thermionic-field emission from interface states at grain boundaries in silicon”, J. Appl. Phys., Vol. 55, 1984, pp. 312-317
[35] N. F. Mott, W. D. Twose, “The theory of impurity conduction”, Advances in Physics, Vol. 10, 1961, pp. 107-163
[36] 林宏年、呂嘉裕、林鴻志、黃調元,局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS) 之材料、製程與元件特性分析(I),奈米通訊,第十二卷第一期,2005年2月,pp44-49
[37] Indrajit Paul, Bivragh Majeed, Kafil M. Razeeb, and John Barton, “Characterizing stress in ultrathin silicon wafers”, Appl. Phys. Lett. ., Vol. 89, 2006, pp. 073506-1~3
[38] John C. Schug, A. C. Lilly, Jr., and D. A. Lowitz, “Schottky Currents in Dielectric Films”, Physical Review B, Vol. 1, June 1970, pp.4811-4818
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.126.74
論文開放下載的時間是 校外不公開

Your IP address is 52.14.126.74
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code