Responsive image
博碩士論文 etd-0725108-141846 詳細資訊
Title page for etd-0725108-141846
論文名稱
Title
聚焦離子束於石英玻璃奈米結構加工之探討
Study on fabrication of fused quartz nano-structures by focused ion beam
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-17
繳交日期
Date of Submission
2008-07-25
關鍵字
Keywords
奈米結構、聚焦離子束、原子力顯微鏡、石英玻璃
atomic force microscopy., fused quartz, nano-structure, focused ion beam
統計
Statistics
本論文已被瀏覽 5674 次,被下載 6128
The thesis/dissertation has been browsed 5674 times, has been downloaded 6128 times.
中文摘要
本論文主要研究聚焦離子束(focused ion beam, FIB)對石英玻璃(fused quartz)奈米結構的加工特性。奈米科技的進展方興未艾,新技術、新元件不斷湧現,而聚焦離子束具有在奈米尺度高材料蝕刻率與高圖形分辨率、且不需加工光罩並對局部區域加工等優點,因此利用聚焦離子束加工奈米結構的研究很多。本研究目的在探討聚焦離子束加工的相關參數對石英玻璃奈米結構製作的影響,例如離子束電流(beam current)、蝕刻區域重疊的程度(overlap)與離子束停留在單點時間長短(dwell time)等。此外,搭配原子力顯微鏡(atomic force microscope, AFM)與聚焦離子束剖面(cross-section)進行量測。得知離子束電流愈大時有較大的擴散效應,而在小離子束電流與dwell time 10μs及overlap 50%時有較佳的加工結果。而比較區域蝕刻與圖檔輸入的加工影響,我們發現使用圖檔輸入有較小的擴散效應。
Abstract
The fabrication characteristic of focused ion beam (FIB) for fused quartz was investigated. With the progress of nanotechnology, new technologies and devices are invented constantly. In nanofabrication, FIB has several advantages such as high material removal rate, high resolving power and direct fabrication in some selected areas without etching mask. Therefore, it had been studied in detail to fabricate nano-structures by FIB. In this study, we found out the effect of nano-machining by adjusting the parameters of FIB system such as: beam current, overlap, and dwell time. The fabricated features together with their surface morphology and profile were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Results show that when beam current was smaller, overlap was 50% and dwell time was 10μs could get best performance by FIB.
目次 Table of Contents
誌謝 I
目錄 II
表目錄 V
圖目錄 VII
摘要 X
ABSTRACT XI
第1章 緒論 1
1-1 研究動機與背景 1
1-2 文獻回顧 3
1-3 本文架構 8
第2章 聚焦離子束及原子力顯微鏡 10
2-1 聚焦離子束 10
2-1-1 聚焦離子束技術概論 10
2-1-2 聚焦離子束系統組成 11
2-1-3 聚焦離子束工作原理 16
2-1-4 聚焦離子束成像原理 17
2-1-5 聚焦離子束掃描參數 19
2-1-6 聚焦離子束基本功能 19
2-1-7 聚焦離子束實驗機台 20
2-2原子力顯微鏡 23
2-2-1 原子力顯微鏡基本原理 23
2-2-2 原子力顯微鏡之訊號紀錄與回饋方式 27
2-2-3 力曲線模式 27
2-2-4 原子力顯微鏡實驗機台 29
第3章 實驗步驟 34
3-1 實驗主要參數介紹 34
3-1-1 離子束電流 34
3-1-2 離子束停留在單點時間長短與掃描模式 34
3-1-3 區域蝕刻與圖檔輸入 35
3-2 實驗步驟 36
3-2-1 樣品準備 36
3-2-2 實驗項目 37
第4章 實驗結果與討論 44
4-1 原子力顯微鏡量測準確性的探討 44
4-2 探討聚焦離子束參數條件對加工的影響 50
4-2-1 離子束電流之探討 51
4-2-2 離子束停留在單點時間長短之探討 55
4-2-3 掃描模式之探討 58
4-3 聚焦離子束製作奈米溝槽 62
4-4探討區域蝕刻與圖檔輸入對加工之影響 68
第5章 結論與未來展望 77
5-1 結論 77
5-2 未來展望 78
參考文獻 79

表目錄
表2- 1 比較聚焦式離子束和掃描式電子顯微鏡的成像原理19
表2- 2 SMI3050SE FIB-SEM HYBRID SYSTEM規格表22
表2- 3雙束型聚焦離子束性能圖(☆=可,X=否)23
表2- 4 AFM儀器規格 30
表2- 5 AR5-NCH-10之微懸臂規格 33
表3- 1 溝槽組加工之尺寸設定,線條長度皆3ΜM 38
表3- 2 加工溝槽組之尺寸設定,長度為3ΜM 42
表3- 3 加工溝槽之尺寸設定 43
表4- 1 機台加工之設定 44
表4- 2 不同離子束電流製作溝槽之機台設定 51
表4- 3 不同離子束電流製作溝槽之AFM量測結果 54
表4- 4 不同DWELL TIME 製作溝槽之機台參數 55
表4- 5 不同DWELL TIME製作溝槽之AFM量測結果 57
表4- 6 不同掃描模式製作溝槽組之機台設定 58
表4- 7 不同OVERLAP製作溝槽組之AFM量測結果 61
表4- 8 加工奈米溝槽組之機台設定 62
表4- 9 AFM量測奈米溝槽結果 66
表4- 10 使用區域蝕刻與BMP圖檔輸入之機台設定 68
表4- 11 使用區域蝕刻模式與BMP圖檔輸入之AFM量測結果 74

圖目錄
圖1- 1 (A)沉積鋁薄膜,(B)蝕刻溝槽,(C)RIE深蝕刻 5
圖2- 1 FIB組成元件 10
圖2- 2 液態金屬離子源示意圖 12
圖2- 3 離子柱結構圖 14
圖2- 4 離子束原理示意圖 16
圖2- 5 離子束撞擊物質表面時所產生帶電粒子 16
圖2- 6 雙束型聚焦離子束儀器 20
圖2- 7 原子力顯微鏡原理示意圖 23
圖2- 8 原子與原子之間作用力圖 [張憲彰] 24
圖2- 9 加在Z掃描管上的週期性三角波電壓訊號意示圖 27
圖2- 10 接觸式原子力顯微鏡力曲線示意圖 27
圖2- 11 DI 3100 AFM外觀 28
圖2- 12 AR5-NCH-10探針之SEM [NANOSENSORS] 31
圖3- 1 理論電流大小與離子束直徑關係圖 34
圖3- 2 FIB機台掃描方式 35
圖3- 3 掃瞄參數圖[STARK 1995] 35
圖3- 4 像素尺寸設定之示意圖 36
圖3- 5導電層示意圖 37
圖3- 6 AFM掃描方向示意圖 38
圖3- 7 AFM探針產生量測誤差之示意圖[VEECO] 39
圖3- 8 AR5探針量測溝槽之圖形[VEECO] 40
圖3- 9 FIB加工頗面量測之示意圖 41
圖4- 1 FIB製作溝槽組之結果 45
圖4- 2 AFM有桿平處理量測溝槽組之結果 47
圖4- 3 AFM未桿平處理量測溝槽組之結果 48
圖4- 4 FIB CROSS-SECTION溝槽結構之圖形 49
圖4- 5 量測比對圖 50
圖4- 6 不同離子束電流製作溝槽之結果 52
圖4- 7 不同離子束電流製作溝槽之AFM量測結果 53
圖4- 8 加工線寬與擴散效應之關係圖 55
圖4- 9 不同DWELL TIME製作溝槽之結果 56
圖4- 10 不同DWELL TIME製作溝槽之AFM量測結果。由左至右為DWELL TIME:1ΜS、10ΜS、50ΜS、100ΜS以及500ΜS 56
圖4- 11 DWELL TIME與加工時間及深寬比之關係圖 57
圖4- 12 不同掃描模式製作溝槽組之加工結果 59
圖4- 13 不同OVERLAP製作溝槽組之AFM量測結果 61
圖4- 14 預設深度與深度誤差在不同OVERLAP下之關係圖 62
圖4- 15 FIB加工奈米溝槽結果 63
圖4- 16 AFM量測奈米溝槽之結果 65
圖4- 17 ION FLUENCE與擴散效應之關係圖 67
圖4- 18 ION FLUENCE與蝕刻深度關係圖 67
圖4- 19 使用區域蝕刻與BMP圖檔輸入之加工結果71
圖4- 20 使用區域蝕刻模式與BMP圖檔輸入之AFM量測結果 73
圖4- 21 加工線寬與擴散效應之關係圖 76
圖4- 22 FIB製作光柵結構,(左) 區域蝕刻、(右) 圖檔輸入 76
參考文獻 References
Alù, Andrea, (2005), "Achieving transparency with plasmonic and metamaterial coatings", Physical review E, 72, 016623.

Bouhelier, A., (2001), "Plasmon optics of structured silver films", Physical Review B, volume 63, 155404.

Brongersma, M.l., (2007), "Plasmonics - the missing link between nanoelectronics and microphotonics", Appl. Phys. A, 89, pp.221-223.

Busch, K., (2007), "Periodic nanostructures for photonics ", Physics Reports, 444, pp.101 - 202.

Dai, Tao; Kang, Xiangning; Zhang, Bei; Xu, Jun; Bao, Kui; Xiong, Chang; Gan, Zizhao, (2008),"Study and formation of 2D microstructures of sapphire by focused ion beam milling", Microelectronic Engineering, 85, pp.640–645.

Daniel, J. H.; Moore, D. F.; Walker, J. F., (1998), "Focused ion beams for microfabrication", Engineering Science and Education Journal, (4), 53.

Engheta, Nader; Ziolkowski, Richard W., (2006), "Metamaterials Physics and Engineering Explorations", Wiley Interscience.

Engheta, Nader, (2007), "Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials", Science, Vol 317, pp.1698-1702.

Fu, Yongqi; Bryan, Ngoi Kok Ann;Shing, Ong Nan; Wyan, Hung Nguyen Phu, (2000), "Influence analysis of dwell time on focused ion beam micromachining in silicon", Sensors and Actuators A: Physical, volume 79, issue 3, pp.230-234.

Greenleaf, Allan, (2007), "Electromagnetic Wormholes and Virtual Magnetic Monopoles from Metamaterials", Physical Review Letters, 99, 183901.

Gupta, Bikash C.; Ye, Zhen, (2003), "Focusing of electromagnetic waves by periodic arrays of dielectric cylinders", Phys. Rev. B, 67, 153109.

Hoffmann, T.; Seekamp, J., (2001), "Nanoimprint lithography: challenges and prospects", Nanotechnology, 12, pp.91-95.

Hung, N. P.; Fu, Y. Q.; Ali, M. Y., (2002), "Focused ion beam machining of silicon", Materials Processing Technology, 127, 256-260.

Irci, Erdinc; Ertürk, Vakur B., (2007), "Achieving transparency and maximizing scattering with metamaterial-coated conducting cylinders", Physical review E, 76, 056603.

Jelinek, Lukcs, (2007),"Metamaterials - A Challenge for Contemporary Advanced Technology", IEEE, 1-4244-0822-9.

Kang, Hyun-Wook; Cho, Dong-Woo, (2007), "Design and measurement of nanopatterns for FIB reliability assessments", Microelectronic Engineering, 84, 818-821.

Kettle, J.; Hoyle, R. T.; Dimov, S.; Perks, R. M., (2008),"Fabrication of complex 3D structures using Step and Flash Imprint Lithography (S-FIL)", Microelectronic Engineering, 85, pp.853-855.

Kim, Y. K.; Danner, Aaron J.; Raftery, James J.; Jr.; C., Kent D., (2005), "Focused Ion Beam Nanopatterning for Optoelectronic Device Fabrication", IEEE Journal of Selected Topics in Quantumelectronics, 1292-1298.

Lapine, M.; Tretyakov, S., (2007), "Contemporary notes on metamaterials", IET Microw. Antennas Propag., volume 1, no. 1.

Lee, Ming-Kwei; Kuo, Kwei-Kuan, (2006), "Gas-Assisted Etching of Sapphire Using Focused Ion Beam", Japanese Journal of Applied Physics, volume 45, No.4A, pp.2447-2450.

Li, Wuxia; Li, W.; Laley, G..; Dimov, S.; Zhao, H.; Phan, D.T., (2006), "A study of fused silica micro/nano patterning by focused-ion-beam", Applied surface science, APSUSC-14545, pp.7.



Li, Wuxia; Dimov, Stefan; Lalev, Georgi, (2007), "Focused-ion-beam direct structuring of fused silica for fabrication of nano-imprinting templates", Microelectronic Engineering, volume 84, issues 5-8, pp.829-832.

Lourtioz, Jean M., (2007), "Photonic Crystals Towards Nanoscale Photonic Devices", Springer.

Maier, Stean Alexander, (2007), "Plasomonics Fundamentals and Applications", Springer+Business Media LLC.

Melngailis, J., (1987), "Critical review: focused ion beam technology and applications", J. Vac. Sci. Technol. B, volume 5, pp.469-495.

Murguia, J. E.; Musil, C. R.; Shepard, M. I.; Lezec, H.; Antoniadis, D. A.; Melngailis, J., (1990), "Merging focused ion beam patterning and optical lithography in device and circuit fabrication", Journal of Vacuum Science & Technology B, 8(6), 1374.

NANOSENSORS, http://www.nanosensors.com/.

O'Brien, S., (2006), "Negative Refraction and Subdiffraction Imaging", Tyndall National Institute, Cork, Republic of Ireland.

Pendry, J. B., (2000), "Negative Refraction Makes a Perfect Lens", Physical Review Letters, volume 85, 18.

Rockstuhl, Carsten; Lederer, Falk, (2007), "Negative-index metamaterials from nanoapertures", Physical Review B, 76, 125426.

Shao, D. B.; Chen, S. C., (2006), "Direct Patterning of Three-Dimensional Periodic Nanostructures by Surface-Plasmon-Assisted Nanolithography", Nano Letters, volume 6, no.10, pp.2279-2283.

SII Nano Technology Inc., (2004), "SMI3050SE FIB-SEM Hybrid System", Instruction Manual Rev., 1.3.

Srituravanich, Werayut, (2004), "Plasmonic Nanolithography", Nano Letters, volume 4, no.6, pp.1085-1088.

Srituravanich, W., (2005), "Deep subwavelength nanolithography using localized surface Plasmon modes on planar silver mask", J. Vac. Sci. Technol. B, 23(6), 0734-211X.

Stark, T. J.; Sheed, G. M.; Vitarelli, J.; Griffis, D. P.; Russell, P. E., (1995), "H2O enhanced focused ion beam", J. Vac. Sci. Technol. B, volume13, pp.2565-2569.

Stockman, Mark I., (2007), "Attosecond nanoplasmonic-field microscope", nature photonics, vol 1.

Torres, Sotomayor; M., C.; Zankovych, S.; Seekamp, J., (2003), "Nanoimprint lithography an alternative nanofabrication approach", Material Science and Engineering C, volume 23, pp.23-31. Elsevier Science.

Veeco, http://www.veeco.com/.

Villarroya, Maria; Barniol, Nuria; Martin, Cristina; Pe’rez-Murano, Francesc; Esteve, Jaume; Bruchhaus, Lars; Jede, Ralf; Bourhis, Eric; Gierak, Jacques, (2007), "Fabrication of nanogaps for MEMS prototyping using focused ion beam as a lithographic tool and reactive ion etching pattern transfer", Microelectronic Engineering, volume 84, issues 5-8, pp.1215-1218.

Winter, D. A. M. de; Mulders, J. J. L., (2007), "Redeposition characteristics of focused ion beam milling for nanofabrication", Vacuum Science & Technology B, volume 25, issue 6, pp. 2215-2218.

Xu, Xingsheng; Chen, Hongda; Xiong, Zhigang; Jin, Aizi; Gu, Changzhi; Cheng, Bingying; Zhang, Daozhong, (2007), "Fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam method", Thin Solid Films, volume 515, issue 22, pp.8297-8300.

Youn, Sung-Won, Okuyama, Chieko; Takahashi, Masaharu; Maeda, Ryutaro, (2008),"A study on fabrication of silicon mold for polymer hot-embossing using focused ion beam milling", Journal of Materials Processing Technology, 201, pp.548–553.

王玉麟,(1994),“低能量掃描式聚焦離子束及其表面科學與光電科技應用”,中央研究院原子與分子科學研究所。

台積電於IEDM宣佈其32奈米製程已成功試產,電子工程專輯。http://www.eettaiwan.com/ART_8800493219_480202_NT_fc9f79d6.HTM

吳志宏,(2002),“FY91可行性研究計劃結案報告”,工研院機械所。

張憲彰,陳哲雄,林俊勳,林紋瑞,吳靖宙,“原子力顯微鏡(Atomic Force Microscopy)成像原理與中文簡易操作手冊”,成功大學醫學工程所生醫感測實驗室。

許英傑,(2005),“利用聚焦離子束光罩製作之灰階微透鏡”,交通大學碩士論文。

許鴻隆,(2005),“近場光學讀取頭中奈米孔與固態浸沒透鏡整合製程之研究”,交通大學碩士論文。

黃宏勝,(2006),“利用聚焦離子束和磁性鍍膜技術來增進MFM探針之解析度”,工研院材化所。

黃惠中,(2003),“奈米材料分析”,滄海書局。

葉謀振,(1991),“FIB 應用在故障分析的簡介”,工研院電子所。

鄭紹章,胡一君,周曉宇,陳至信,(2006),“聚焦離子束輔助沉積三維奈米懸浮結構技術之探討與應用”,真空科技 十九卷三期 pp.21-25。

盧慶儒,(2007),“以細微製程見長的奈米壓印技術已趨近實用化”,DIGITIMES。 http://tech.digitimes.com.tw/ShowNews.aspx?zCatId=145&zNotesDocId=0000049329_B5H88Q4LZ21KLTALU1UHS

羅聖全,(2005),“先進穿透式電鏡/雙粒子束聚焦離子束顯微切割技術在超解析近場儲存光碟之讀取機制探討”,工研院材料所。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code