Responsive image
博碩士論文 etd-0725108-173639 詳細資訊
Title page for etd-0725108-173639
論文名稱
Title
金屬奈米粒子表面電漿效應之研究
A Study of Surface Plasmon Effect Excited on Metal Nanoparticles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-16
繳交日期
Date of Submission
2008-07-25
關鍵字
Keywords
表面電漿、金屬奈米粒子、液晶
metal nanoparticle, surface plasmon, liquid crystals
統計
Statistics
本論文已被瀏覽 5645 次,被下載 2017
The thesis/dissertation has been browsed 5645 times, has been downloaded 2017 times.
中文摘要
本論文係以金屬奈米粒子表面電漿效應為研究主題,利用金屬奈米粒子中之群體電子對入射電磁波的共振特性,進一步研究奈米粒子的光學性質與潛在應用。本研究工作共分為三部分:
第一部分,銀奈米粒子即時吸收光譜之量測。利用即時吸收光譜之量測技術,研究銀奈米薄膜在加溫過程中之動態光學行為。配合暗視野光學顯微鏡、掃描式電子顯微鏡與原子力顯微鏡之觀察,確定金屬粒子粒徑由5奈米成長至250奈米。在加溫過程中,並發現吸收光譜具有藍移與紅移等現象。根據此即時且非破壞性之量測技術,可應用於金屬奈米粒子光學特性及動態行為之分析。
第二部分,利用雷射脈衝製作有序金奈米粒子光柵結構。將兩道同極化之10-9秒雷射短脈衝光入射在金奈米薄膜表面的相同區域,脈衝的空間週期的光強度分布,使金奈米薄膜進行瞬間高溫退火處理。結果顯示,受高溫退火的薄膜區域,形成金奈米顆粒;未受高溫退火的區域則維持薄膜結構,故造成有序金奈米粒子分布之光柵。我們並且發現金奈米粒子表面電漿效應對光柵第一階繞射效率產生貢獻,使繞射效率為一波長函數之曲線。
第三部分,參雜銀奈米粒子之膽固醇液晶光柵繞射效率之研究。由於金屬奈米粒子表面電漿共振波長可由週遭環境介電特性決定,故利用膽固醇液晶光柵來調製銀奈米粒子表面電漿效應。此銀奈米粒子之週期性環境激發週期性表面電漿效應,並產生一額外繞射波段位於表面電漿共振波長周圍。此研究成功應用膽固醇液晶作為調製表面電漿共振的介質,並使表面電漿成為可藉由電壓控制之光學特性。
本研究主要實驗結果證實金屬奈米粒子的尺寸、尺寸分布、密度及週遭環境介電特性,皆會影響金屬奈米粒子表面電漿效應。換言之,表面電漿共振波長會隨金屬奈米粒子的尺寸或遭環境折射率變化,此一特性以廣泛應用於生物感測或奈米光學元件。本文中,以Mie散射理論為基礎,討論金屬奈米粒子的吸收光譜特性,並分析群體電子在電磁波影響下的運動,如何影響金屬奈米粒子之光學行為。
Abstract
Collective oscillation of conduction electrons in metallic nanoparticles known as localized surface plasmon resonance has been studied for nano-optics applications. The excitation of localized surface plasmons on nano-structured metal material leads to strong light scattering and absorption. Since the localized surface plasmon resonance is strongly dependent on the shape, size, size distribution, and dielectric property of surrounding environment of nano-structured metal, the dependence can be applied in wide applications. However, the direct and non-destructed observation of nano-structured metal is required to the development of nano-technology, we proposed a real time optical observation due to the optical respons of metal nano-particles system. Furthermore, we proposed a fast and simple method to fabricate a high order metal nano-particles array and used liquid crystal material to directly modulate the surface plasmon effect on the metal nanoparticles.

The purpose of this work is to study the surface plasmon effect excited on metal nanoparticles. These works are described as follows:

A. The topic of the first work is “Real time absorbance spectra due to optical dynamics of silver nano-particles film”, we report the real time absorbance spectra due to optical dynamics of silver nano-particles film under a heating treatment from 28 to 300 ℃. A 7nm-thicked sliver film was thermally deposited on an indium tin oxide glass substrate. In the process of heating, the real time absorbance spectra of silver nano-particles film were measured by an optical spectrometer. It was noted that the absorbance spectra of the film varied with the heat-treating temperature and time. The peak position in the spectra curve shifted to shorter wavelength below the temperature of 250 ℃, then shifted to red band due to higher temperature treatment. With the comparison of scanning electron micrograph analysis, the real time absorbance spectra exhibited a particular optical property confirmed by the dynamic dark-field optical microscopy system. The real-time absorbance spectra and dark-field micrographs analyses lead to a direct and non-destructed observation of growing evolution of metal nano-particles.

B. The topic of the second work is “Laser pulse induced gold nanoparticles grating”. We report the results of our experimental investigation of laser induced gold nano-particle gratings and their optical diffraction properties. A single shot of a pair of Nd-YAG laser pulses of the same polarization is directed toward a thin gold film of thickness 6 nm on a substrate of polymethyl methacrylate (PMMA). As a result of the laser illumination, the thin gold film is fragmented into an array of nano-particles. Using scanning electron and dark-field optical micrographs, we discovered that the morphology of the gold nanoparticles grating is dependent on the fluence of laser pulse. The spectrum of first order diffraction shows a spectral dependence, possibly due to the presence of the nano-particles of various sizes. The ablation of thin films of nano-thickness via the use of laser pulses may provide a simple and efficient method for the fabrication of nano-scale structures, including 2D arrays of nano-particles.

C. The topic of the second work is “Surface plamons induced extra diffraction band of cholesteric liquid crystal grating”. We investigated the diffraction behavior of cholesteric liquid crystal (CLC) grating with the surface plasmon effect was investigated. One indium-tin-oxide plate of the CLC grating cell was covered with silver nanoparticles. With the application of a proper voltage, a well formed phase grating was constructed in the CLC cell. The CLC grating was probed by a beam of the polarized-monochromatic light, and the wavelength range was from 450 to 700 nm. It was shown that an extra first-order diffraction band was observed around 505 nm. The physical reason of the extra diffraction band could be the surface plasma effect emerged from silver nanoparticles. The extra diffraction band due to the surface plasmon effect can offer potential applications in nano-optics, such as the optical switch function.
目次 Table of Contents
Abstract.. I
Acknowledgements V
List of Contents VI
List of Figures VI
List of Tables VI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Organization 3
Chapter 2 Study and application of metallic nano-particles system 7
2.1 Fundamental optical property of metal nanoparticles 7
2.1.1 Geometry effect on localized surface plasmons 7
2.1.2 Dielectric effect on localized surface plasmons 9
2.1.3 Localized surface plasmons of metal nanorods 10
2.2 Preparation and Arraying of metal material 13
2.2.1 Photoinduced conversion of silver naonspheres to nanoprisms 13
2.2.2 Electron beam lithography (nano-array) 15
2.2.3 Focused ion beam (FIB) 16
2.3 Application and development of localized surface plasmon resonance (LSPR) 19
2.3.1 Surface Plasmon Enhanced Raman Scattering 19
2.3.2 Interference of locally excited surface plasmons 20
2.3.3 Plasmon wave between metal nano-particle 22
2.3.4 Nanodot coupler with a surface plasmon polariton condenser 26
2.3.5 Surface-Plasmon-Coupled Emission of Quantum Dots 30
2.3.6 Electrically controlled light scattering 31
2.3.7 Enhanced semiconductor optical absorption 32
2.3.8 Bio-sensor device 31
2.4 Future Development of LSPR 34
Chapter 3 Theoretical backgraund 38
3.1 Plasmon damping in metal 39
3.2 Optical Dielectric Property of metal material 39
3.2.1 Dielectric response in quasi electric field 41
3.2.2 Oscillation via an incident electromagnetic radiation 45
3.2.3 Theoretical and Experimental optical constant 45
3.3 Mie’s theory 49
3.3.1 Dielectric dependent absorbance 52
3.3.2 Scattering, absorption and extinction cross section 53
3.4 Separation of plasmon-polariton modes of metal particle 54
Chapter 4 Real time absorbance spectra of silver nano-particles film 57
4.1 Optical absorbance of silver nanoparticle 57
4.1.1 Dielectric and size dependent absorbance 58
4.2 Preparation of silver nanoparticles film 59
4.3 Micro-observation of sliver nanoparticles film 60
4.4 Real time observation on the evolution silver nanoparticles film 62
4.4.1 Dark-field microscopy 62
4.4.2 Real time optical absorbance spectra 64
Chapter 5 Laser pulse induced gold nanoparticles gratings 69
5.1 Deposition of nano thick gold film 69
5.2 Transfromation between optical and thermal energy 71
5.3 Gold nanoparticles gratings 73
5.3.1 Diffraction property of gold nanoparticles gratings 74
Chapter 6 Surface plasmons induced extra diffraction band of cholesteric liquid crystal gratings 79
6.1 Fundamental optical property of chlesteric liquid crystal 79
6.1.1 Optical birefringence 79
6.1.2 Theoretical Diffraction efficiency of CLC grating 80
6.1.3 Diffraction pattern and diffraction efficiency 83
6.2 Surface plasmon effect induced by CLC grating environment 86
6.2.1 Fabrication of CLC grating with Ag nanoparticles 87
6.2.2 Extra diffraction band induced by surface plasmon effect 89
6.3 Theoretical model of periodic surrounding environment 91
Chapter 7 Summmary 101
Appendix: Optical property of liguid crystal 103
List of Publication 112
參考文獻 References
1. G. Mie: Ann. Phy. 25, 377 (1908)
2. P. Debye: Ann. Phys. 30. 57 (1909)
3. H. C. Van de Hulst, “Light Scattering by Small Particle”, Wiley, New York (1957)
4. Willam T. Doyle, “Electrodynamic resoponse of metal spheres”, J. Opt. Soc. Am. A 2, 1031 (1985)
5. U. Kreibig, M.Vollmer, Ootical Properties of Metal Cluster, Springer-Verlag, Berlin, New York (1995)
6. S. Underwood, P. Mulvaney, Langmuir, 10, 3427 (1994)
7. P. Mulvaney, Langmuir, 12, 788 (1996)
8. Eliza Huntter and Janos H. Fendler, “Exploitation of Localized Surface Plamon Resonance”, Adv. Mater. 16, 1685 (2004)
9. Rongchao Jin,1 YunWei Cao,1 Chad A. Mirkin,1 K. L. Kelly,George C. Schatz,1 J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms”, SCIENCE 294, 1901 (2001)
10. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanopaticles”, Journal of Chemical Physics 116, 6755 (2002)
11. Katrin Kneipp, Yang Wang, Harald Kneipp, Lev T. Perelman, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, Phys. Rev. Lett. 78, 1667 (1997)
12. Eliza Hutter and Marie-Paule Pileni, “Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy”, J. Phys. Chem. B 107, 6497( 2003)
13. YunWei Charles Cao, Rongchao Jin, Chad A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection”, Science 297, 1536 (2002)
14. P. Dawaon, A. F. Puygranier, J. P. Goudonnet, Phys. Rev. B 63, 205410 (2001)
15. Robert M. Dickson and L. Andrew Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys, Chem. B 104, 6095 (2000)
16. L. A. Sweatlock, S. A. Maier, and H. A. Atwater, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles”, Physical Review B 71, 235408 (2005)
17. H. Yockelllelievre, E. F. Borra, A. M. Ritcey, L. V. Dasilva, Appl. Opt. 42, 1882 (2003)
18. Stefan A. Maier, Mark L. Brongersma, Pieter G. Kik, and Harry A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy” PHYSICAL REVIEW B 65, 193408 (2002)
19. Wataru Nomura, Motoichi Ohtsu, and Takashi Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion”, Appl. Phys. Lett 86, 181108 (2005)
20. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons”, Appl. Phys. Lett. 81, 1762 (2002)
21. G. Kalyuzhny, A. Vaskevich, M. A. Schneeweiss, and I. Rubinstein, Chem. Eur. J. 8, 3850 (2002)
22. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, J. Phys. Chem. B 104, 8238 (2001)
23. E. Hutter, M. P. Pileni, J. Phys. Chem. B 107, 6497 (2003)
24. M. Maillard, P. Huang, L. Brus, Nano Lett 3, 1611 (2003)
25. R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, Nature 425, 487 (2003)
26. Sylvia Underwood and Paul Mulvaney, Langmuir, 10, 3427 (1994)
27. A. Heilmann1, M. Quinten, and J. Werner, “Optical response of thin plasma-polymer films with non-spherical silver nanoparticles”, Eur. Phys. J. B 3, 455 (1998)
28. S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999)
29. C. J. Murphy and N. R. Jana, Adv. Mater. 14, 80 (2002)
30. Stephan Link and Mostafa A. El-Sayed, J. Phys. Chem. B 103, 8410-8426 (1999)
31. W. L. Barnes, T. W. Preist, S. J. Kitson, J. R. Sambles, Phys. Rev. B 54, 6227 (1996)
32. V. Vlasko-Vlasov, A. Rydh, J. Pearson and U. Welp, “Spectroscopy of surface plasmons in metal films with nanostructures”, Appl. Phys. Lett., 88, 173112 (2006)
33. William L. Barnes1, Alain Dereux and Thomas W. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424, 826 (2003)
34. Shuming Nie and Steven R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, SCIENCE, 275, 1102 (1997)
35. Sheldon Schultz, David R. Smith, Jack J. Mock, and David A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels”, PNAS 97, 996 (2000)
36. L. Novotny, B. Hecht and D. W. Pohl, “Interference of locally excited surface plasmnos”, J. Appl. Phys. 81, 1798 (1997)
37. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons”, Appl. Phys. Lett. 81, 1762 (2002)
38. Ignacy Gryczynski, Joanna Malicka, Wen Jiang, Hans Fischer, Warren C. W. Chan, Zygmunt Gryczynski, Wojciech Grudzinski, and Joseph R. Lakowicz, “Surface-Plasmon-Coupled Emission of Quantum Dots”, J. Phys. Chem. B 109, 1088 (2005)
39. J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, Appl. Phys. Lett. 81, 171 (2002)
40. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles”, Appl. Phys. Lett. 86, 063106 (2005)
41. William T. Doyle, “Electrodynamic response of metal sphere”, J. Opt. Soc. Am. A 2, 1031 (1985)
42. Patrick Englebienne, Anne Van Hoonacker and Michel Verhas, “Surface plasmon resonance: principles, methods and application in biomedical science”, Spectroscopy 17, 255 (2003)
43. Stefan A. Maier, Pieter G. Kik, Harry A. Atwater, Ssheffer Meltzer, Ari A. G. Requicha, and Bruce E. Koel, “Observation of coupled plasmno-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit”, Proceedings of SPIE.
44. P. B. Johnsonand R. W.Christy, “Optical constants of the Noble Metals”, Phys. Rev. B 6, 4370 (1972)
45. Uwe Kreibig and Peter Zacharias, “Surface plasma resonances in small spherical silver and gold particles”, Z. Physik 231, 1283 (1970)
46. Ph. Buffat and J-P Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A 13, 2287 (1976)
47. Lucia B Scaffardi and Jorge O Tocho, “Size dependence of refractive index of gold nanoparticles”, Nanotechnology 17, 1309 (2006)
48. Uwe Kreibig and Michael Vollmer, “Optical properties of metal clusters”, Series: Springer Series in Materials Science (1995)
49. Graifg F. Bohern and Donald R. Huffman, “Absorption and Sacttering of light by small particle”, John Wiley and SONS, New York (1983)
50. U. Kreibig and B. Schmitz and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles” Phys. Rev. B 36, 5027 (1987)
51. T. L. Ferrell, ‘‘Surface-enhanced Raman scattering in Ag-pyride sols,’’ Phys. Rev. B 25, 2930 (1982).
52. T. A. Callcott and E. T. Arakawa, ‘‘Volume and surface photoemission processes from plasmon resonance fields,’’ Phys. Rev. B 11, 2750 (1975).
53. S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, ‘‘Optical properties of heated Ag films,’’ Phys. Rev. B 29, 2926 (1984).
54. J. W. Little, T. L. Ferrell, T. A. Callcott, and E. T. Arakawa, ‘‘Radiative decay of surface plasmons on oblate spheroids,’’ Phys. Rev. B 26, 5953 (1982).
55. M. C. Buncick, R. J. Warmack, and T. L. Ferrell, ‘‘Optical absorbance of silver ellipsoidal particles,’’ J. Opt. Soc. Am. B 4, 927 (1987).
56. M. J. Bloemer, T. L. Ferrell, M. C. Buncick, and R. J. Warmack, ‘‘Optical properties of submicrometer-size silver needles,’’Phys. Rev. B 37, 8015 (1988).
57. R. J. Warmack and S. L. Humphrey, ‘‘Observation of two surface plasmon modes on gold particles,’’ Phys. Rev. B 34, 2246 (1986)
58. Rongchao Jin, YunWei Cao, Chad A. Mirkin, K. L. Kelly, George C. Schatz, J. G. Zheng, “Photoinduced Conversion of Silver Nanospheres to Nanoprisms,” Science 294, 1901 (2001)
59. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116, 6755 (2002)
60. Robert M. Dickson and L. Andrew Lyon, “Unidirectional Plasmon Propagation in Metallic Nanowires,” J. Phys. Chem. B. 104, 6095 (2000)
61. Katrin Kneipp, Yang Wang, Harald Kneipp, Irving Itzkan, Ramachandra R. Dasari, and Michael S. Feld, “Population Pumping of Excited Vibrational States by Spontaneous Surface-Enahced Raman Scattering”, Phys. Rev. Let. 76, 2444 (1996)
62. Nicholas Fang, Hyesog Lee, Cheng Sun, Xiang Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 534 (2005)
63. A. Kocabas, A. Dana, and A. Aydinli, “Excitation of a surface plasmon with an elastomeric grating,” Appl. Phys. Let. 89, 041123 (2006)
64. H. J. Eicher, P.Gunter and D. W.Pohl, “Laser-Induced Dynamics Gratings”, Springer-Verlag, Berlin (1986)
65. F.F.Y. wang, volume editor M. Bass “Materials processing theory and practices Volume 3”, ch4, laser heat treatment, V. G. Gregson, 201-224 (North-holland Amsterdam, 1983)
66. Yu Wang, Appl. Phys. Lett. 67, 2759 (1995)
67. J. Muller, C. Sonnichsen, H. von Poschinger, G. von Plessen, T. A. Klar, and J. Feldmann, Appl. Phys. Lett. 81, 171 (2002)
68. Wen-Chi Hung, Ming-Shan Tsai , Yi-Chung Juan , I-Min Jiang, P Yeh, and Wood-Hi Cheng, Appl. Phys. Lett. 90, 183115 (2007)
69. R. M. Dickson and L. A. Lyon, J. Phys. Chem. B, 104, 6095 (2000)
70. Stefan A. Maier, Mark L. Brongersma, Pieter G. Kik, and Harry A. Atwater, Phys. Rev. B 65, 193408 (2002)
71. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002)
72. Irina Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas and C. G. Ding, J. Appl. Phys. 98, 013531 (2005)
73. Fabrice Meriaudeau, Todd R. Downey, Ali Passian, Andrew Wig, Thomas L. Ferrell, Applied Optics 37, 8030 (1998)
74. Molly M. Miller, and A. Lazarides, J. Phys. Chem. B 109, 21556-21565, (2005)
75. D. Subacius, P. J. Bos, and O. D. Lavrentovich, Appl. Phys. Lett. 71, 1350 (1997)
76. D. Subacius, S. V. Shiyanovskii, Ph. Bos, and O. D. Lavrentovich, Appl. Phys. Lett. 71, 3323 (1997)
77. R. Magnusson and T. K. Gaylord, J. Opt. Soc. Am. 68, 806 (1978).
78. R. Magnusson and T. K. Gaylord, J. Opt. Soc. Am. 68, 809 (1978).
79. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)
80. S. W. Kennerly, J. W. Little, R. J. Warmack, and T. L. Ferrell, “Optical properties of heated Ag film”, Physical Review B, 29, 2926, 1984
81. Fabrice Meriaudeau, Todd R. Downey, Ali Passian, Andrew Wig, and Thomas L. Ferrell, Applied Optics, 37, 8030, 1998
82. P. Royer, J. P. Goudonnet, R. J. Warmack, and T. L. Ferrell, Physical Review B, 35, 3753, 1987
83. E. D. Palik, “Handbook of optical constants of solids”, Vols.1-3, Academic (1997)
84. Pochi Yeh and Claire Gu, “Optics of liquid crystal display”, A Wiley Interscience Publication, John Wiley & Sons, Inc, New York (1999)
85. Iam-Choon Khoo, “Liquid Crystal, Physical properties and nonlinear optical phenomena”, A Wiley Interscience Publication, John Wiley & Sons, Inc, New York (1995)
86. Ger. Vertogen and Wim H. de Jeu, “Thermotropic Liquid Crystals, Fundamentals”, Springer-Verlag Berlin Heidelberg (1988)
87. Hirohias Kawamoto, “The History of Liquid-Crystal Displays”, Proceedings of IEEE, 90, 460 (2002)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code