Responsive image
博碩士論文 etd-0725108-180336 詳細資訊
Title page for etd-0725108-180336
論文名稱
Title
具光電轉換與可規則排列材料之有機光伏特計薄膜研究
Photoelectric Conversion and Regular Pattern Derivation of Organic Photovoltaic Thin Film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-25
繳交日期
Date of Submission
2008-07-25
關鍵字
Keywords
太陽能電池、液晶、整齊
liquid crystal, regular, solar cell
統計
Statistics
本論文已被瀏覽 5625 次,被下載 0
The thesis/dissertation has been browsed 5625 times, has been downloaded 0 times.
中文摘要
盤狀液晶具有自組裝特性,排列整齊的盤狀液晶可應用於多種有機光電元件;本新型高分子盤狀液晶DLC-PAM,是以高分子聚丙烯醯胺(polyacrylamide,PAM)作為高分子的主鏈,再以化學合成將盤狀液晶單體DLC-Acid6接到高分子的側鏈上。本研究分為兩部份,第一部份量測盤狀液晶的光電特性與變化,利用偏光顯微鏡觀察溫度變化時液晶排列的特性,可確定DLC-PAM呈現柱狀排列;透過X-光繞射儀鑑定DLC-PAM為六角柱狀堆積,有利於載子傳輸;DLC-PAM由UV-VIS量測吸收光譜,其在409nm有一吸收峰,證明可吸收可見光;以光電子光譜分析儀(PESA)量測其HOMO電位為5.47電子伏特,搭配UV-VIS由吸收光譜計算材料能隙為2.55~2.82電子伏特,再利用能隙及HOMO電位計算其LUMO電位為2.65~2.92電子伏特。
第二部份將DLC-PAM導入有機太陽能電池,由能階及各種不同元件結構測試可知DLC-PAM適合做為電洞傳輸層,加入於太陽能電池ITO/PEDOT:PSS/P3HT:PCBM/Al中,PEDOT與P3HT:PCBM之間,結構變為ITO/PEDOT:PSS/DLC-PAM/P3HT:PCBM/Al,量測證明幫助電洞傳輸的高分子盤狀液晶DLC-PAM確實能提升太陽能電池之效率,比起標準元件提升16.2%的效率。
Abstract
Discotic liquid crystal is one kind of self-assembled material, liquid crystal with regular alignment could be applied to many kinds of organic electro-optical devices. This novel discotic liquid crystal polymer DLC-PAM, we used polyacrylamide(PAM) as main chain of the novel discotic liquid crystal polymer DLC-PAM and grafted the discotic liquid crystal monomer Acid-6 onto PAM by chemical synthesis. There were two parts in this study, first we investigated the electro-optical properties of DLC-PAM. Observation the aligned property of DLC-PAM during temperature variation utilizing polarizing optical microscope, DLC-PAM exhibited the columnar alignment. We observed hexagonal columns which DLC-PAM aligned by X-ray diffraction, it benefited the carrier transporting. The absorption spectrum of DLC-PAM presented an absorption peak at 409 nm certifying that DLC-PAM could absorb the visible light. We measured the HOMO potential of DLC-PAM which is 5.47eV by PESA. Form absorption spectrum we calculated the band-gap of DLC-PAM which was 2.55~2.82eV, and then we used the HOMO potential and the band-gap to calculate the LUMO potential of DLC-PAM to be 2.65~2.92eV.
The second part in this study we applied DLC-PAM to the organic solar cell. Because of the energy level of DLC-PAM and the different device structure tests we realized that DLC-PAM was suitable to be hole transporting layer. The device structure we used was ITO/PEDOT:PSS/DLC-PAM/P3HT:PCBM/Al, DLC-PAM layer was added between the PEDOT:PSS layer and the active layer. The power conversion efficiencies proved that DLC-PAM layer which benefited hole transporting raising the power conversion efficiency of the solar cell. The power efficiency of the device added DLC-PAM layer raised 16.2% comparing with the standard device.
目次 Table of Contents
誌 謝............................................................................I
摘 要............................................................................II
Abstract......................................................................III
第一章 緒論 ................................................................1
1.1 前言...................................................................... 1
1.2 有機太陽能電池結構發展.................................. 3
1.2.1單層結構.............................................................3
1.2.2雙層異質接面(heterojunction)結構.................4
1.2.3單層異質接面結構 ............................................6
1.3 研究動機與目的..................................................10
第二章 基本理論........................................................13
2.1有機薄膜太陽能電池之工作原理.......................13
2.2 有機太陽能電池之功率轉換效率 .....................18
2.3 盤狀液晶(discotic liquid crystal, DLC..........20
2.4 高分子液晶材料..................................................23
2.4.1 主鏈型高分子液晶材料 (main-chain
liquid crystal polymer, MCLCP)..........................23
2.4.2 側鏈型高分子液晶材料(side-chain
liquid crystal polymer,SCLCP)............................24
2.4.3 複合型高分子液晶材料...................................24
第三章 實驗儀器及其原理........................................25
3.1 雙晶薄膜X光繞射儀( X-ray diffractmeter,
XRD)........................................................................25
3.1.1 儀器簡介...........................................................25
3.4.2 儀器原理[14]....................................................26
3.2 旋轉塗佈機(spin coater)...................................30
3.3蒸鍍機(Evaporator).............................................31
3.3.1儀器簡介............................................................31
3.3.2 儀器原理...........................................................31
3.4 偏光顯微鏡 (Polarizing Optical Microscope).33
3.5 紫外與可見光光譜儀(UV-Vis spectrometer)
.....................................................................................35
3.5.1 儀器簡介...........................................................35
3.5.2 儀器原理...........................................................36
3.6 太陽光譜模擬量測系統(solar simulator system)...................................................................38
3.6.1 儀器簡介..........................................................38
3.6.2 儀器原理..........................................................39
3.7 表面輪廓儀(Surface profiler)...........................40
3.8 光電子光譜分析儀(Photo-electron
spectroscopy in air,簡稱PESA)..........................42
第四章 Thin film solar cell元件之製作..................44
第五章 量測與結果分析...........................................52
5.1 光學分析.............................................................52
5.1.1 紫外與可見光光譜之探討..............................52
5.2 能階分析.............................................................54
5.3 排列特性分析.....................................................57
5.3.1 偏光顯微鏡分析..............................................57
5.3.2 X光繞射儀分析..............................................62
5.3.3 光電量測系統分析.........................................64
5.4有機薄膜太陽能電池元件效率之探討.............68
5.4.1 量測步驟及儀器參數.....................................68
5.4.2 DLC-PAM以bulk-heterojunction結構作
為donor....................................................................68
5.4.3 DLC-PAM作為電子傳輸層...........................71
5.4.4 DLC-PAM作為電洞傳輸層Type A(ITO/DLC-PAM/PEDOT:PSS/P3HT:PCBM/Al)...............73
5.4.5 DLC-PAM作為電洞傳輸層 Type B (ITO/PEDOT:PSS/DLC-PAM/P3HT:PCBM/Al)......................76
5.5 DLC-PAM/active layer 分層分析..................81
第六章 結論與未來工作........................................85
6.1 結論..................................................................85
6.2 未來工作..........................................................86
參考文獻.................................................................87
參考文獻 References
[1] C. W. Tang, “Two-layer organic photovoltaic cell”,Appl. Phys. Lett. 48 (1986), pp. 183-185
[2] M. Granstro¨m, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R.H. Friend, Nature (London) 395, 257(1998).
[3] C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
[4] Kim, E. H.; Moon, I. K.; Kim, H. K.; Lee, M. H.; Han, S. G.; Yi, M. H.; Choi,K.-Y., Polymer 1999, 40, 6157.
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys.25, 676, 1954
[6] Amal K Ghosh and Tom Feng , ”Merocyanine organic solar cells”, J. Appl. Phys. , Vol.49 , No.12 , December 1978
[7] H. Schurmann, N. Koch, P. Imperia, S. Schrader, M. Landke, P. Strohriegl,Brehmer, Synth. Metals, 102, 1069(1999)
[8] L. Schmidt-Mende,1 A. Fechtenkötter,2 K. Müllen,2 E. Moons,3 R. H. Friend,1 J. D. MacKenzie1, Science 293, 1119 (2001)
[9] Journal;Hager;Hanker,J.Am.Pharm.Assoc.,44,1955,138-141.
[10] Dipl.Ing. Klaus Petritsch, “Organic Solar Cell Architectures”, Cambridge and Graz, 2000
[11] Chandrasek, S.Sadashiva, B.K. , Suresh, K.A.Pramana, 9,471,1977
[12] 賴耿陽編著;液晶製法與應用,1997,復漢出版社。
[13] Boden, N.; Bushby, R., J.; Clements, J.; Movaghar, B. J. Mater. Chem.1999, 9, 2081-2086.
[14] Jena.A.K.;Rath.Nigam P.Sahoo,Bhagirathi;Sahoo.B.Indian.J.Chem. Sect.A.EN:22,5,1983,371-375.
[15] 溫長榮,盤狀液晶材料之設計與研究,2002,中央大學,碩士論文
[16] G. Hersberg,“Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules,van Nostrand Reihold Company Inc., New York, 196
[17] 曹梓毅,具高玻璃轉移溫度聚芳香醚之高分子物性及光電特性分析與應用,2007,中山大學,碩士論文
[18] 范鐸正,新式盤狀液晶結合聚丙烯醯胺材料開發與光電特性研究及其有機太陽能電池之應用,2007,中山大學,碩士論文
[19] 吳崇熙,介面緩衝層之特性對於有機高分子太陽能電池之研究,2007,中山大學,碩士論文
[20] 王裕文,主要吸收層結構及電洞傳輸層對有機高分子混合型異質接面太陽能電池之影響,2005,東華大學,碩士論文
[21] T. N. Blanton1, H.P. Chen2, J. Mastrangelo2, S.H. Chen2,“AN X-RAY DIFFRACTION STUDY OF TRIPHENYL BASED DISCOTIC LIQUID CRYSTALS”,JCPDS-International Centre for Diffraction Data 2001,Advances in X-ray nalysis,Vol.44
[22] 楊鈞凱,太陽能電池之效率量測系統與元件表現參數之分析,2005,東華大學,碩士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.17.20
論文開放下載的時間是 校外不公開

Your IP address is 3.145.17.20
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code