Responsive image
博碩士論文 etd-0725109-075310 詳細資訊
Title page for etd-0725109-075310
論文名稱
Title
表面波與內波相互影響之實驗
Experimental Study on the Interaction between Surface Wave and Internal Wave
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-05
繳交日期
Date of Submission
2009-07-25
關鍵字
Keywords
表面波、內波、HHT、實驗室實驗
internal wave, surface wave, laboratory experiment, HHT
統計
Statistics
本論文已被瀏覽 5692 次,被下載 19
The thesis/dissertation has been browsed 5692 times, has been downloaded 19 times.
中文摘要
表面波與內波是在許多大洋中普遍存在的一種自然現象。目前大部份海洋學者認為內波對表面波影響遠大於後者影響前者,即內波傳遞時在表層發生短暫流,進而影響表面波。在大洋中當內波傳遞至海底山脊附近,因內波破碎引發大幅度渦動,此作用對表面波傳遞勢必造成相對變化。近年來,雖有多位學者在國際期刊提出這種現象的相關理論推導,但至今鮮少有表面波與內波相互影響的研究與實驗,以供驗證。
本研究於國立中山大學內波實驗室內進行實驗,探討表面波與內波傳遞通過單一山形障礙物時波動特性之演化。實驗時使用一座12 × 0.5× 0.7公尺的鋼架內波水槽,在其內部佈置兩層水體(上層密度為996kg/m3;下層密度1030kg/m3),以點撞式造波機(plunging type)造波,依所需實驗項目產生上層所需之表面波動,並間接於界面層衍生內波群。
此外藉由不同水深比探討當表面波與內波群通過單一山形障礙物時,障礙物上方與障礙物後方之兩者波動特性的變化。藉由整理實驗結果,分析以上變因對表面波及內波波動特性之轉變及相關物理量的影響。在等密度的均質水體中,進行表面波通過山形障礙物實驗時,發現當總水位較淺時,障礙物上方之表面波因碎波,波浪振幅減小,而在通過山形障礙物後方時,表面波有再生現象,其波高相較於障礙物上方為大,且主要週期亦恢復原始週期。而在雙層水體中之表面波與內波通過山形障礙物實驗中發現,若內波因距離障礙物較遠,波浪與障礙物的輕度作用,使振幅與週期幾乎不變,但在障礙物上方的表面波則有週期變長,但振幅幾乎無改變的結果;而在碎波作用時可知,當表面波與內波傳遞至山形障礙物時對,波浪頻譜的變化較為顯著,內波本身振幅減小,週期稍減,而表面波則受因內波碎波的影響,其振幅增大但週期則減小。
由分析多組不同水深比與造波條件的數字,可以統計方法找出適當的實驗經驗式,再與既有的學理公式相驗證,提供現場觀測之依據或數值模式的邊界關係。
Abstract
Surface gravity waves and internal waves are two of the most common natural phenomena in the ocean. While oceanographers believe that internal waves have greater influence over the surface waves, if is not clear to what extent that the former have affected the latter. As an internal wave propagating in the ocean, short period flow could be induced on the free surface layer. Moreover, as internal waves propagating over a submarine ridge, internal breaking accompanying by large vortex may have occurred, which may also affect the properties of the surface waves. To prove the relationship between them, basic mathematical equations have been derived, but had never been proven in the laboratory experiments or field observations.
In this thesis, the results of a series of laboratory experiments conducted at the National Sun Yen-sen University are employed to study the waveform evolution and change to the physical parameters of the surface waves, resulting from the generation of internal waves induced on a stratified fluid, as both propagate together above a plane bottom or across single ridge. These experiments were carried out in a stratified two-layer fresh/brine water system (upper layer with fresh water density 996 kg / m3; bottom layer brine water with 1030 kg / m3) in a steel framed wave tank of 12m long with cross-section of 0.7 m high by 0.5 m wide. A plunging-type wave maker was used to produce the designated surface waves, from which the internal waves were induced at the interface.
Based on the experimental results in the fluid system with uniform density, wave height and period of the surface wave were first calibrated. It was found that the amplitude of a surface wave decreased first due to the breaking of the internal wave on the apex of a submerged ridge and then increased due to wave regeneration at the back of the ridge, when the surface wave propagated over single ridge. Beyond the ridge, the peak period with maximum energy associated with the transmitted wave remained almost the same with that of the incident waves. In a stratified fluid system, wave height of the surface waves and internal waves did not suffer much change but the peak period of a surface wave increased as an internal wave just across the apex of the obstacle, under a condition referred to as weaken interaction between the waves and the obstacle. For the intense wave breaking condition at the interface, wave height of the internal waves decreased and the period of surface waves or internal waves shortened. However, wave height of the surface wave above the apex of the obstacle increased due to the intense wave breaking.
The results obtained from the present laboratory experiments on the interaction between a surface wave and the induced internal wave could benefit others interested in surface and internal wave interaction for practical applications in oceanography or numerical modeling.
目次 Table of Contents
謝誌 I
摘要 II
Abstract III
目錄 V
符號說明 VII
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 現場研究調查 2
1.2.2 實驗室研究 6
1.3 研究目的 7
1.4 本文架構 9
第二章 內波基本理論與分析方法 11
2.1 內波生成機制 11
2.2 內波消散機制 12
2.3 傳統不規則波浪之頻譜分析 13
2.4 FFT (Fast Fourier transform) 頻譜分析 14
2.5 HHT(Hilbert-Huang Transform)時間-頻率分析的理論架構 16
2.6 EMD(Empirical Mode Decomposition Method)經驗模態分解法 17
2.6.1 篩選過程(Siffing Process) 17
2.6.2 整合經驗模態分解法(Ensemble EEMD) 21
第三章 實驗室佈置 25
3.1 實驗設置 25
3.2 研究步驟 29
3.3 實驗量測儀器之佈置 32
3.4 實驗條件 34
3.5 實驗項目 35
第四章 實驗數據初步彙整 39
4.1 實驗室實驗情況說明 39
4.1.1 輕度作用 39
4.1.2 碎波作用 40
4.2 造波機之波動率定 45
4.3 實驗室實驗條件參數 47
4.4 實驗室數據結果 49
第五章 實驗數據分析與討論 59
5.1 均質水體實驗 59
5.1.1 表面波波形 59
5.1.2 均質水體中表面波造波的參數率定 60
5.2 雙層水體無障礙物實驗 63
5.2.1 雙層水體無障礙物實驗的波形圖 63
5.2.2 表面波波動特性在雙層水體與均質水體無障礙物實驗之差異 66
5.3 均質水體有障礙物實驗 68
5.4 雙層水體有障礙物實驗 76
5.4.1 雙層水體有障礙物實驗之波形與頻譜分析 76
5.4.2 均質水體及雙層水體有障礙物實驗之波動特性與無因次參數關係 92
第六章 結論與建議 94
6.1 結論 94
6.2 建議 95
參考文獻 參-1
參考文獻 References
1. Bole, J.B., J.J. Ebbesmeyer, and R.D. Romea, (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas, pp. 367-375.
2. Corredor, J.E., (2008). Development and Propagation of internal waves in the Mona Passage. Sea Technology, 49(10):48-50.
3. Dalzeiel, S.B., M. Carr, J.K. Sveen, and P.A. Davies, (2007). Simultaneous synthetic schlieren and PIV measurements for internal solitary waves. Meas. Sci. Technol., 18:533-547.
4. Ebbesmeyer, C.C., and R.D. Romea, (1992). Final design parameters for solitons at selected locations in South China Sea. Final and Supplementary reports prepared for Amoco Production Company, 209 pp plus appendices.
5. Garrett, C.J.R., and W.H. Munk, (1992). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264.
6. Huang, N.E., Z. Shen, S.R. Long, M.C. Wu, E.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, and H.H. Liu, (1998).The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Royal Soc. London Ser. A, 454:903-95.
7. Huang, N.E., Z. Shen, and S.R. Long, (1999). A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech., 31:417-57.
8. Haury, L.R., M.G. Briscoe, and M.T. Orr, (1979). Tidally generated internal wave packets in Massachusetts Bay, Nature, 278-312.
9. Hsu, M.K., A.K. Liu, and C. Liu, (2000). A study of internal waves in the China Seas and Yellow Sea using SAR. Continental Shelf Res., 20: 389-410.
10. Jackson, C.R., (2004). An atlas of internal solitary-like waves and their properties, 2nd ed., 560pp. Global Ocean Assoc., Alexandria, Va. (Available at http://www.internalwaveatlas.com)
11. Jackson, C., (2007). Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res., 112(C3): C11012.
12. Lin, T.W., (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan.( In Chinese)
13. Liu C.T., P. Roberk, K. Jody, M.K. Hsu, H.W. Cren, and C. Villanoy, (2006). Nonlinear internal wave from the Luzon Strait. EOS Transactions American Geophysical Union, 87(42):449-451.
14. Maxworthy, T., (1979). A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. J. Geophys. Res., 84:, 338-346.
15. Michallet, H., and E. Barthelemy, (1998). Experimental study of large interfacial solitary waves. J. Fluid Mech., 366: 159-177.
16. Michallet, H., and G.N. Ivey, (1999). Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res., 104(C6): 13467-13477.
17. Moore, S.E., and R.C. Lien, (2007). Pilot whales follow internal solitary waves in the South China Sea. Marine Mammal Science, 23(1): 193-196.
18. Orr, M.H., and P.C., Migneret, (2003). Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves. J. Geophys. Res., 108(C3):3064.
19. Osborne, A.R., and T.L. Burch, (1980). Internal solitons in the Andaman Sea. Science, 208 (4443): 451-460.
20. Ramp, S.R., T.Y. Tang, T.F. Duda, J.F. Lynch, A.K. Liu, C.S. Chiu, F.L. Bahr, H.R. Kim, and Y.J. Yang, (2004). Internal solitons in the northeastern south China Sea. Part 1: sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4): 1157-1181.
21. Stevens, C., G. Lawrence, P. Hamblin, and E. Carmack, (1996). Wind forcing of internal waves in a long narrow stratified lake. Dynamics of Atmospheres and Oceans, 24: 41-50.
22. Stevick, P.T., L.S. Incze, S.D. Kraus, S. Rosen, N. Wolff, and A. Baukus, (2008). Trophic relationships and oceanography on and around a small offshore bank. Marine Ecology Progress Series, 363:15-28.
23. Sveen, J.K., Y. Guo, P.A. Davies, and J. Grue, (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188.
24. Thrope, S.A., (1978). On the shape and breaking of finite amplitude internal gravity waves in a shear flow. J. Fluid Mech., 85: 7-31.
25. Thrope, S.A., (1987). On the reflection of a train of finite-amplitude internal waves from a uniform slope. J. Fluid Mech., 178: 279-302.
26. Troy, C.D., and J.R. Koseff., (2005). The generation and quantitative visualization of breaking internal waves. Experiments in Fluid, 38:549-562.
27. Wallace, B.C., and D.L. Wilkinson, (1988). Run-up of internal waves on a gentle slope in a two-layered system. J. Fluid Mech., 191: 419-442.
28. Wang, Y.H., C.F. Dai, and Y.Y. Chen, (2007). The physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophys. Res. Let., 34: L18609, doi:10.1029/2007GL030658.
29. Wessels, F., and K. Hutter, (1996) Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr., 26 (1): 5-20.
30. Wu, Z., and N.E. Huang, (2004). A study of the characteristics of white noise using the empirical mode decomposition method. Proc. Roy. Soc. London, A, 460: 1597-1611.
31. Wu, Z., and N.E. Huang, (2005). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Center for Ocean-land-Atmosphere Studies, Tech. Rep. No. 193.
32. Vlasenko, V.I., and K. Hutter, (2001). Generation of second mode solitary waves by the interaction of a first mode soliton with a sill. Nonlinear Processes in Geophysics, 8: 223-239.
33. Zhao, Z., V. Klemas, Q. Zheng, and X.H. Yan, (2004). Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Let., 31: doi:10.1029/2003GL019077.
34. 楊穎堅、張明輝、唐存勇 (2003)。南海北部陸棚邊緣之內孤立子,第五屆水下技術研討會論文集, 209-218頁。
35. 郭金棟(2004)。「海岸保護」。台北:科技圖書,52-60頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.206.169
論文開放下載的時間是 校外不公開

Your IP address is 3.145.206.169
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code