Responsive image
博碩士論文 etd-0725109-180800 詳細資訊
Title page for etd-0725109-180800
論文名稱
Title
暴潮巨浪作用下海岸緩衝帶寬度的研擬
Beach Buffer Width Requirement Subject to Storm Wave
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
138
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-09
繳交日期
Date of Submission
2009-07-25
關鍵字
Keywords
海灘平衡剖面、海岸緩衝帶、暴風
storm, beach buffer width, SBEACH, equilibrium beach profile
統計
Statistics
本論文已被瀏覽 5718 次,被下載 2146
The thesis/dissertation has been browsed 5718 times, has been downloaded 2146 times.
中文摘要
近年來,環保意識高漲,政府水利單位提議現階段海岸防護與營造,除仍應以防災、減災及防侵為主,同時擬兼顧景觀、生態與親水,並以柔性自然工法回復海岸風華。

本研究從防災角度,探討人工養灘的海灘平衡剖面受不同重現期的颱風波浪所造成的海灘侵蝕及潛洲蒐集文獻,並以美國工程師兵團的SBEACH進行數值模式模擬分析海灘寬度、不同粒徑的坡度及水位等因素的影響,最後將數據彙整並迴歸分析,嘗試規劃適當的海岸緩衝帶寬度。在模式率定方面,則利用美國CERC在1960年代的大型波浪水槽試驗的海灘剖面資料,探討 SBACH模式中參數K值及ε值的設定關係。

藉由修正的率定參數設定,可模擬不同情境下的海灘剖面變化。研究結果顯示:(1)在不同重現期颱風作用下,相同無因次沉降速度(H0/ωT)時,重現期越大侵蝕後灘寬度越大,灘線後退量也隨颱風強度變大而增加,且沙洲形成位置隨颱風重現期增加而離岸越遠;(2)不同粒徑海灘在相同波浪作用時,粒徑越大後灘掏刷距離越大,灘線後退距離却逐漸減少;而顆粒小的沙質容易帶往外海,使沙洲形成位置遠離海灘線;(3)在相同重現期及粒徑的條件下,無因次沉降速度相同,波浪與設計水位越大者,其後灘侵蝕量越大,其灘線後退距離反而減少;反之,潛洲位置則離海岸越遠;(4)由探討不同粒徑與緩衝帶關係之迴歸模擬結果可知,粒徑越小的沙灘,必須規劃寬廣的海灘,以消減颱風巨浪所挾帶的能量。
Abstract
With increasing demands on environmental protection in recent years, the Government agency concerned has recently proposed the strategies for shore protection and management, which aim for prevention and mitigation of coastal disaster and reduction in coastal erosion, as well as the creation of an environment with focus on landscape, ecology and community recreation. Soft and quasi-natural approach will be implemented to restore the glory of a stable coast.

Based on the consideration of disaster prevention, this study investigates the beach profile changes, which include beach berm erosion and bar formation resulting from storm waves with different return periods. The SBEACH model is used to estimate the beach changes subject to variable conditions of beach berm width, medium sand grain diameter, beach slope and design water level etc. Regression analysis is then applied to establish a relationship between the storm beach buffer width and relevant physical parameters. Prior to this, the results of large wave tank tests on beach profile changes conducted by Coastal Engineering Research Center in the United States are used to calibrate the two main parameters K and ε used in SBEACH model.

Beach profile changes can now be estimated systematically using a set of modified K and ε values. After having performed a series numerical studies, we may conclude that: (1) With storms of different return periods but identical non-dimensional fall velocity (H0/ωT), berm erosion increases and the location of the bar becomes further offshore as storm return period increases ; (2) With different sand grain sizes subject to identical storm wave conditions, beach berm erosion increases as grain size increased, but shoreline retreat decreases; and location of bar is further offshore for a beach consisting smaller sand grains; (3) Under the same storm return period and sand grain diameter (i.e., similar non-dimensional fall velocity), berm erosion increases as storm intensity and design water level increase, but shoreline retreat decreases and bar is located nearer; and vice versa; (4) from a series of calculations based on different sand grains and storm beach buffer width, it is found that larger buffer is required for beach with smaller grain size, in order to absorb the storm wave energy.
目次 Table of Contents
目 錄
誌 謝........................... ................................................I
中文摘要..... ....................................................................II
英文摘要..... ...................................................................III
目 錄........................................................................IV
圖 目 錄.......................................................................VII
表 目 錄........................................................................XI
符號說明..... ..................................................................XII
附 錄..................................................................附錄1
附 圖..................................................................附圖1
第一章 緒論....................................................................1
1.1 研究動機與目的.......................................................1
1.2 文獻回顧...................................................................2
1.3 研究方法與步驟.....................................................10
1.4 本文組織.................................................................11
第二章 海岸地形與海灘斷面變化...............................12
2.1 海岸分類.................................................................12
2.2 海剖灘面分類.........................................................12
2.2.1 二分類法...............................................................13
2.2.2三分類法................................................................15
2.3 平衡海灘剖面模式.................................................18
2.3.1 單一剖面型態.......................................................18
2.3.2 複合剖面型態.......................................................19
第三章 SBEACH系統簡介...........................................22
3.1 SBEACH系統簡介.................................................22
3.1.1 SBEACH之發展...................................................23
3.1.2 SBEACH輸入設定及介面說明...........................25
3.1.2.1 Reach Configuration.......................................25
3.1.2.2 Storm Configuration........................................31
3.2 SBEACH模組的運算與資料輸出..................... .....35
3.3 SBEACH計算模式 ................................................36
3.3.1 波浪計算模式.........................................................38
3.3.1.1 模式相容性及使用限制......................................39
3.3.1.2 波浪之數值計算..................................................40
3.3.2 海灘剖面變化之計算簡介......................................45
3.3.2.1 模式相容性及使用限制.......................................45
3.3.2.2 剖面變化之數值計算...........................................45
第四章 SBEACH模式在海灘剖面變遷的應用..............50
4.1 SBEACH主要參數率定.............................................50
4.2 灘線後退距離及離岸沙洲位置預測.........................60
4.2.1 模擬在不同重現期颱風作用下的海灘剖面變化...64
4.2.2不同底質中值粒徑的海灘剖面變化........................75
4.2.3不同設計水位與海灘剖面變化................................80
4.3 SBEACH模式於海岸緩衝帶寬度設計應用.............85
第五章 結論與建議...........................................................93
5.1 結論.............................................................................93
5.2 建議.............................................................................94
參考文獻...........................................................................參1
參考文獻 References
1.Allen, J.R.L., (1970). The avalanching of granular
solid on dune and similar sloes. J. Geology, 78
(3): 326-351.
2.Battjes, J.A., (1974). Surf similarity. Proc. 14th Inter.
Conf. Coastal Eng., ASCE, vol.1, pp.466-480.
3.Bodge K. R., (1988). Longshore current and
transport across non-singular equilibrium beach
profiles. Coastal Eng. Chapter 104.p1396~p1410.
4.Bodge, K.R., (1992). Representing equilibrium
beach profiles with an expression, J. Coastal
Research, 8: 47-55.
5.Bruun, P., (1954). Coast erosion and the
development of beach profiles. Tech. Memo 44,
Beach Erosion Board, U.S. Army Corps of
Engineers, Washington, D.C.
6.Capobianco, M., H. Hanson, M. Larson, H. Steetzel,
M.J.F. Stive, Y. Chatelus, S. Aarninkhof, and T.
Karambas, (2002). Nourishment design and
evaluation: applicability of model concepts.
Coastal Engineering, 47: 113-135.
7.Çelikoğlu, Y., Y. Yüksel, M.S. Kabdaşlı, (2004).
Longshore sorting on a beach under wave action.
Ocean Engineerin 31: 1351–1375.
8.Çelikoğlu, Y., Y. Yüksel ksel,and M.S. Kabdaşlı,
(2006). Cross-shore sorting on a beach under
wave action. Journal of Coastal Research, 22 (3):
487–501.
9.Dally, W.R., and R.G. Dean, (1984). Suspended
sediment transport and beach profile evolution, J.
Waterway, Ports, Coastal and Ocean Eng., ASCE,
110(1): 15-33.
10.Dally, W.R., (1985). Wave height variation across
beaches of arbitrary profile. J. Geophysical
Research, 90(6): 11917-11927.
11.Dean, R.G., (1977). Equilibrium beach profile: U.S.
Atlantic and Gulf Coasts. Department of Civil
Engineering, Ocean Engineering Report No.12,
University of Delaware, Newark, Delaware.
12.Dean, R.G., (1991). Equilibrium beach profiles:
Characteristics and applications, J. Coastal
Research, 7: 53-84.
13.Dette, H. H., and K. Uliczka, (1987). Prototype
investigation on time-dependent dune recession
and beach erosion. Proc. Coastal
Sediments ’87, ASCE, v. 2, pp. 1430-1444.
14.Dette, H. H., M. Larson, J. Newe, J. Peters, K.
Reniers, and A. Steetzel, (2002). Application of
prototype flume tests for beach nourishment
assessment. Coastal Engineering, 47: 137-177.
15.Ebersole, B.A., (1986). Measurements and
prediction of wave height decay in the surf zone.
Proc. 20th Inter. Conf. Coastal Eng., ASCE,
pp.1765-1781.
16.Galvin, C.J., (1968). Breaker travel and choice of
design wave height. J. Waterways and Harbors
Division, ASCE, 95(2): 175-200.
17.Günaydın, K., and M.S. Kabdaşlı, (2003).
Characteristics of coastal erosion geometry under
regular and irregular waves. Ocean Engineering
30: 1579–1593.
18.Günaydın, K., and M.S. Kabdaşlı, (2005).
Investigation of offshore bar geometry under
regular and irregular waves. Journal of Coastal
Research, 21 (2): 374–382.
19.Hedegaard, I.B., R. Deigaard, and J. Fredsoe,
(1991). Onshore/offshore sediment transport
and morphological modelling of coastal profiles.
Proc. Coastal Sediment’91, ASCE, pp. 643–657.
20.Horikawa, K., (1987). Nearshore Dynamics and
Coastal Processes. University of Tokyo.
21.Horikawa, K. and C.T. Kuo, (1966). A study on wave
transformation inside the surf zone. Proc. 10th
Inter. Conf. Coastal Eng., ASCE, vol. 1, pp.217-233.
22.Hsu, T. W., and H. Wang, (1997). Geometric
characteristics of storm beach profiles. Journal of
Coastal Research, 13(4): 1102-1110.
23.Hsu, T.W., J.M. Liau, and J.Y. Lin, (1998). A model
for predicting equilibrium storm beach profiles.
Journal of the Chinese Institute of Civil and
Hydraulic Engineering, 10: 271-278. (In Chinese)
24.Hsu, T.W., I.F. Tseng, and C.P. Lee, (2006). A new
shape function for bar-type beach profiles. Journal
of Coastal Research, 22(3): 728-736.
25.İsmail Hakkı Özölçer, (2008). An experimental
study on geometric characteristics of beach
erosion profiles. Ocean Engineering, 35: 17–27.
26.Kajima, R., S. Saito, T. Shimizu, K. Maruyama, H.
Hasegawa, and T. Sakakiyama, (1983). Sand
transport experiments performed by using a large
wave tank. Central Res. Inst. for Electric Power
Industry, Japan, Data Rep. No. 4-1.
27.Keulegan, G.H., and W.C. Krumbein, (1949).
Stable configuration of bottom slope in a shallow
sea and its bearing on geological processes.
EOS Trans. AGU, 30(6): 855-861.
28.Komar, D. P., and W. G. McDougal, (1994). The
analysis of exponential beach profiles. Journal of
Coastal Research, 10(1): 59-69.
29.Kriebel, D.L., W.R. Dally, and R.G. Dean, (1986).
Undistorted Froude model for surf zone sediment
transport. Proc. of the 20th Inter. Conf. Coastal
Eng., ASCE, pp. 1296–1310.
30.Larson, M., (1988). Quantification of beach profile
change. D.Sc. Thesis, Department of Water
Resources Engineering, University of Lund,
Sweden.
31.Larson, M., and N.C. Kraus, (1989). Prediction of
beach fill response to varying wave and water
level. Proc. Coastal Zone ’89, ASCE, pp. 607-
621.
32.Larson, M., N. C. Kraus, and M.R. Byrnes, (1990).
SBEACH: Numerical model for simulating storm-
induced beach change, Report 2, Numerical
Formulation and Model Tests. Tech Rept. CERC
89-9. Coastal Engineering Research Center, US
Army Corps of Engineers.
33.Larson, M., and N. C. Kraus, (1991). Equilibrium
profile of a beach with varying grain size. Proc.
Coastal Sediments’91, ASCE, v.1, pp. 905-919.
34.Larson, M., N.C. Kraus, and R.A. Wise, (1999).
Equilibrium beach profiles under breaking and
non-breaking waves. Coastal Engineering, 36: 59-
85.
35.NRC, (1990). Health Effects of Exposure to Low
Levels of Ionizing Radiation, BEIR V, National
Academy of Sciences, National Research Council,
Washington, D.C. 1990.
36.Longuet-Higgins, M.S., and R.W. Stewart, (1962).
Radiation stress and mass transport in gravity
waves with application to ‘surf beat’. J. Fluid
Mech., 13: 481-504.
37.Longuet-Higgins, M.S., and R.W. Stewart, (1963). A
note on wave set-up, J. Marine Research, 21: 4-10.
38.Nicloe, A. E., and P. Wang, (2007). Immediate
profile and planform evolution of a beach
nourishment project with hurricane influences.
Coastal Engineering, 54: 49-66.
39.Quick, M.C., M. Asce, and J. Ametepe, (1991).
Relationship between longshore and cross-shore
transport. Proc. Coastal Sediment’91, ASCE,
WA, pp. 184–195.
40.Rector, E. L., (1954), Laboratory study of
equilibrium profiles of beaches. Technical
Memorandum 41, Beach Erosion Board,
Washington D.C. Corps of Engineers, 38pp.
41.Roelvink, J.A., and M.J.F. Stive, (1989). Bar-
generating cross-shore flow mechanisms on a
beach, J. Geoghys. Research, 94(C4): 4785-4800.
42.Roelvink, J.A., and I. Broker, (1993). Cross-shore
profile models. Coastal Engineering, 21: 163–
191.
43.Rosati, J.D., R.A .Wise, N.C. Kraus, and M. Larson,
(1993). SBEACH:Numerical model for
simulating storm-induced beach change,
Report3, User’s Manual. Coastal Eng. Res.
Center, US. Army Crops of Engineers.
44.Sánchez-Badorrey, E., M.A. Losada, and J. Rodero,
(2008). Sediment transport patterns in front of
reflective structures under wind wave-dominated
conditions. Coastal Engineering, 55(7-8): 685-700.
45.Schoonees, J.S., and A.K. Theron, (1995).
Evaluation of 10 cross-shore sediment
transport/morphological models. Coastal
Engineering, 25: 1–41.
46.Silvester, R., and J.R.C. Hsu, (1993). Coastal
Stabilization:Innovative Concepts. Englewood
Cliffs, NJ: Prentice Hall, 578 pp.
47.Silvester, R., and J.R.C. Hsu, (1997). Coastal
Stabilization. Advanced Series on Ocean
Engineering, vol. 14. World Scientific Publishing,
Singapore.
48.Singamsetti, S.R., and H.G. Wind, (1980). Breaking
waves characteristics of shoaling and breaking
periodic waves normally incident to plane
beaches of constant slope. Report M 1371, Delft
Hydraulics Laboratory, Delft, The Netherlands.
49.Sommerfeld, B.G., N.C. Kraus, and M. Larson,
(1996). SBEACH-32 INTERFACE USER’S
MANUAL, TAMU-CC-CBI-95-12 U.S. Army Corps of
Engineers.Sunamura, T., and K. Horikawa,
(1974). Two-dimensional beach transformation
due to waves. Proc. 14th Int. Conf. Coastal Eng.,
ASCE, pp. 920-938.
50.Sunamura, T. (1980). A laboratory study of offshore
transport of sediment and a model for eroding
beaches, Proc. 17th Inter. Conf. Coastal
Engineering, ASCE, pp. 920-938.
51.Sunamura, T., (1984).Quantitative predictions of
beach-face slopes, Geological Society of America
Bulletin, Vol. 95, pp.242-245.
52.Svendsen, I.A., P.A. Madsen, and J.B. Hansen,
(1978). Wave characteristics in the surf zone.
Proc.16th Inter. Conf. Coastal Eng., ASCE, vol. 1,
pp.520-539.
53.Tseng, L.F., C.P. Lee, and H.K. Chang, (1997).
Study on shape functions for bar-type beach
profiles. Proceedings 19th Ocean Engineering
Conference (Taiwan, Republic of China), pp. 561-
568. (In Chinese)
54.Türker, U., and M.S. Kabdaşlı,( 2004). Average
sediment dislocation analysis for barred profiles.
Ocean Engineering, 31: 1741–1756.
55.Walton, T.L., Jr. and R. G. Dean, (2007). Temporal
and spatial change in equilibrium beach profiles
from the Florida Panhandle. Journal of Waterway
Port Coastal and Ocean Engineering, ASCE, 133
(5): 364-376.
56.Wiegel, R.L., (1965). Oceanographical
Engineering. Englewood Cliffs, Prentice Hall, 531
pp.
57.伊彰(2004)。「德國海岸生態工法案例」,生態工
法案例編選集,行政院公共工程委員會,第355~388
頁。
58.林永倫,(2005)。「海灘剖面形狀函數案例分析」,
國立臺灣海洋大學河海工程學系碩士學位論文。
59.林聖家,(2008)。「颱風作用下海灘剖面變化與海
灘緩衝帶之研究」,國立中山大學海洋環境及工程研
究所碩士論文。
60.郭金棟(2004)。「海岸保護」,科技圖書,第89-
94頁。
61.許泰文、廖建明、林毅政(1998)。「暴風型海灘平衡
剖面預測模式研究」,中國土木水利工程學刊,第十
卷,第二期,第271~278頁。
62.許泰文,(2003)。「近岸水動力學」,中國土木水利
工程學會,第367-374頁。
63.許榮中(2006)。「提升岬灣與養灘综合工法的規劃
效能」,中華顧問工程司,第6~7頁。
64.許鵬、許泰文(1994)。「宜蘭海岸海灘斷面變化特
性研究」,國立成功大學水利及海洋工程碩士班碩士
論文。
65.國立中山大學海洋科技研究中心(2009)。「後灣海
岸海堤改善後監測計畫(3/3)」,經濟部水利署第
七河川局委託,民國98年1月。
66.曾以帆、李忠潘、張憲國(1997)。「沙洲形海灘剖
面形狀函數之研究」,第十九屆海洋工程研討會論文
集,第561~568頁。
67.鄭凱文(2004)。「以SBEACH模擬颱風暴浪引起之
海灘剖面變化」,國立中山大學海洋環境及工程研究
所碩士論文。
68.賴堅戊、郭金棟、簡仲和、許泰文、邱繼賢,
(2006)。「台東礫石海岸變遷及其海灘斷面型態探
討」,第28屆海洋工程研討會,第603-608頁。
69.藍元志、許泰文、李怡婷、辛智勇、周玉娟、黃文舜
(2007)。「海岸緩衝區與近岸生態棲息地之關
係」,第二十九屆海洋工程研討會論文集,第
721~726頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code