Responsive image
博碩士論文 etd-0725111-015249 詳細資訊
Title page for etd-0725111-015249
論文名稱
Title
針對非匹配擾動系統之適應順滑模態控制器設計及其在欠致動系統之應用
Design of Adaptive Sliding Mode Controllers for Mismatched Perturbed Systems with Application to Underactuated Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-07-25
關鍵字
Keywords
線性矩陣不等式、非匹配干擾、適應順滑模態控制、李亞普諾夫穩定性理論、欠致動系統
Lyapunov stability theorem, linear matrix inequality, underactuated systems, adaptive sliding mode control, mismatched perturbations
統計
Statistics
本論文已被瀏覽 5693 次,被下載 0
The thesis/dissertation has been browsed 5693 times, has been downloaded 0 times.
中文摘要
本論文針對含有匹配與非匹配干擾之非線性系統提出一個適應順滑模態控制器的設計方法。藉由李亞普諾夫穩定性理論與線性矩陣不等式最佳化技術可得到所設計順滑面函數之係數。含有適應機制的控制器也是藉由李亞普諾夫穩定性理論來設計,因此在不需要知道匹配干擾上界的情形下,所設計的控制器不僅可使得系統軌跡在有限的時間內進入順滑面,並且在系統進入順滑模態之後可有效抑制非匹配擾動對於受控系統之影響,進而達到漸進穩定性。此外本論文所提之控制器設計方法可直接應用於一類欠致動系統。最後,分別以數值範例及實際應用來驗證控制器的可行性。
Abstract
A methodology of designing an adaptive sliding mode controller for a class of nonlinear systems with matched and mismatched perturbations is proposed in this thesis. A specific designed sliding surface function is presented first, whose coefficients are determined by using Lyapunov stability theorem and linear matrix inequality (LMI) optimization technique. Without requiring the upper bounds of matched perturbations, the controller with adaptive mechanisms embedded is also designed by using Lyapunov stability theorem. The proposed control scheme not only can drive the trajectories of the controlled systems reach sliding surface in finite time, but also is able to suppress the mismatched perturbations when the controlled systems are in the sliding mode, and achieve asymptotic stability. In addition, the proposed control scheme can be directly applied to a class of underactuated systems. A numerical example and a practical experiment are given for demonstrating the feasibility of the proposed control scheme.
目次 Table of Contents
Abstract i
List of Figures iv
List of Tables vi
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Brief Sketch of the Contents . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Design of SlidingMode Controllers 5
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . 5
2.2 Design of Sliding Surface and Controllers . . . . . . . . . . . . . . . . . 8
2.3 Determination of the design Parameters in the Sliding Surface Function
and Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 3 Example and Application 31
3.1 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Practical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Chapter 4 Conclusions 56
Bibliography 57
參考文獻 References
[1] I. Fantoni and R. Lozano, Non-linear Control for Underactuated Mechanical Systems, Berlin: Springer, 2001.
[2] M. W. Spong, “Underactuated mechanical systems,” in Control Problems in Robotics and Automation. vol. 230, pp. 135-150, Berlin: Springer, 1998.
[3] R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 305-308, 2002.
[4] L. Xu-Zhi, S. Jin-Hua, S. X. Yang, and W. Min, “Comprehensive Unified Control Strategy for Underactuated Two-Link Manipulators,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 2, pp. 389-398, 2009.
[5] M. Reyhanoglu, A. van der Schaft, N. H. McClamroch, and I. Kolmanovsky, “Dynamics and control of a class of underactuated mechanical systems,” IEEE Transactions on Automatic Control, vol. 44, no. 9, pp. 1663-1671, 1999.
[6] I. Fantoni, R. Lozano, and M. W. Spong, “Energy based control of the Pendubot,” IEEE Transactions on Automatic Control, vol. 45, no. 4, pp. 725-729, 2000.
[7] Z. Wang and Y. Guo, “Unified control for Pendubot at four equilibrium points,” IET Control Theory & Applications, vol. 5, no. 1, pp. 155-163, 2011.
[8] P. Mun-Soo and C. Dongkyoung, “Swing-Up and Stabilization Control of Inverted-Pendulum Systems via Coupled Sliding-Mode ControlMethod,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3541-3555, 2009.
[9] R. Ortega, M. W. Spong, F. Gomez-Estern, and G. Blankenstein, “Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment,” IEEE Transactions on Automatic Control, vol. 47, no. 8, pp. 1218-1233, 2002.
[10] L. Marton, A. S. Hodel, B. Lantos, and J. Y. Hung, “Underactuated Robot Control: Comparing LQR, Subspace Stabilization, and Combined ErrorMetric Approaches,” IEEE Transactions on Industrial Electronics, vol. 55, no. 10, pp. 3724-3730, 2008.
[11] C. Aguilar-Ibanez, “The Lyapunov direct method for the stabilisation of the ball on the actuated beam,” International Journal of Control, vol. 82, no. 12, pp. 2169 - 2178, 2009.
[12] W. Wang, X. D. Liu, and J. Q. Yi, “Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Control Theory & Applications, vol. 1, no. 1, pp. 163-172, 2007.
[13] H. Ashrafiuon and R. S. Erwin, “Sliding mode control of underactuated multibody systems and its application to shape change control,” International Journal of Control, vol. 81, no. 12, pp. 1849 - 1858, 2008.
[14] G. Hu, C. Makkar, and W. E. Dixon, “Energy-Based Nonlinear Control of Underactuated Euler-Lagrange Systems Subject to Impacts, IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1742-1748, 2007.
[15] J. W. Grizzle, C. H. Moog, and C. Chevallereau, “Nonlinear control of mechanical systems with an unactuated cyclic variable,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 559-576, 2005.
[16] A. Shiriaev, J. W. Perram, and C. Canudas-de-Wit, “Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach,” IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1164-1176, 2005.
[17] A. Shiriaev, A. Robertsson, J. Perram, and A. Sandberg, “Periodic motion planning for virtually constrained Euler-Lagrange systems,” Systems & Control Letters, vol. 55, pp. 900-907, 2006.
[18] A. S. Shiriaev, L. B. Freidovich, and S. V. Gusev, “Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom,” IEEE Transactions on Automatic Control, vol. 55, no. 4, pp. 893-906, 2010.
[19] J. Ghommam, F. Mnif, and N. Derbel, “Global stabilisation and tracking control of underactuated surface vessels,” IET Control Theory & Applications, vol. 4, no. 1, pp. 71-88, 2010.
[20] V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212-222, 1977.
[21] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable Structure Control of NonlinearMultivariable Systems: A Tutorial”, Proc. of IEEE, vol. 76, no. 3, pp. 212-232, 1988.
[22] J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control : a survey,” IEEE Transactions on Industrial Electronics, vol. 40, no. 1, pp. 2-22, 1993.
[23] R. Xu and ¨U. ¨Ozg¨uner, “Sliding mode control of a class of underactuated systems,” Automatica, vol. 44, pp. 233-241, 2008.
[24] S. Riachy, Y. Orlov, T. Floquet, R. Santiesteban, and J.-P. Richard, “Second-order slidingmode control of underactuatedmechanical systems I: Local stabilization with application to an inverted pendulum,” International Journal of Robust and Nonlinear Control, vol. 18, pp. 529-543, 2008.
[25] V. Sankaranarayanan and A. D. Mahindrakar, “Control of a Class of Underactuated Mechanical Systems Using Sliding Modes,” IEEE Transactions on Robotics, vol. 25, no. 2, pp. 459-467, 2009.
[26] Y. Chang and C. C. Cheng, “Design of adaptive sliding surfaces for systems with mismatched perturbations to achieve asymptotical stability,” IET Control Theory & Applications, vol. 1, no. 1, pp. 417-421, 2007.
[27] Y. Chang and C. C. Cheng, “Adaptive sliding mode control for plants with mismatched perturbations to achieve asymptotical stability,” International Journal of Robust and Nonlinear Control, vol. 17, pp. 880-896, 2007.
[28] C. C. Wen and C. C. Cheng, “Design of sliding surface for mismatched uncertain systems to achieve asymptotical stability,” Journal of the Franklin Institute, vol. 345, pp. 926-941, 2008.
[29] C. C. Cheng and Y. Chang, “Design of decentralised adaptive sliding mode controllers for large-scale systems with mismatched perturbations,” International Journal of Control, vol. 81, no. 10, pp. 1507-1518, 2008.
[30] G. Tao, Adaptive control design and analysis, New Jersey: John Wiley & Sons, 2003.
[31] J. J. E. Slotine, and W. Li, Applied nonlinear control, New Jersey: Prentice Hall, 1991.
[32] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Philadelphia, PA: SIAM, 1994.
[33] J. L¨ofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,” in IEEE International Symposium on Computer Aided Control Systems Design, pp. 284-289, 2004.
[34] Terasoft, Terasoft Electro-Mechanical Engineering Control System, Terasoft, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.253.221
論文開放下載的時間是 校外不公開

Your IP address is 3.14.253.221
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code