Responsive image
博碩士論文 etd-0725111-161707 詳細資訊
Title page for etd-0725111-161707
論文名稱
Title
一、毛細管電泳結合感應耦合電漿質譜儀於魚肉中汞物種型態分析應用 二、液相層析結合感應耦合電漿質譜於鈷物種型態分析應用
Speciation Analysis of Mercury in Fish Samples by Capillary Electrophoresis Inductively Coupled Plasma Mass Spectrometry Speciation Analysis of Cobalt compounds by Reversed Phase High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-13
繳交日期
Date of Submission
2011-07-25
關鍵字
Keywords
鈷胺素、電噴灑質譜儀、汞、感應耦合電漿質譜儀、維生素B12、毛細管電泳、薄膜去溶劑系統、液相層析
ARIDUS, CE, LC, ICP-MS, ESI-MS, Cobalamin
統計
Statistics
本論文已被瀏覽 5633 次,被下載 1429
The thesis/dissertation has been browsed 5633 times, has been downloaded 1429 times.
中文摘要
由於元素間不同的物種型態具有不同的特性,對於生物體來說其作用也大不相同,因此真實樣品中的物種分析是相當重要的,它可以幫助我們了解不同物種的分布,避免對樣品的性質造成誤判。感應耦合電漿質譜儀(Inductively coupled plasma mass spectrometry,ICP-MS)對於元素分析來說是一靈敏度高、線性範圍廣的分析儀器,適合應用於真實樣品的分析,然而樣品進入ICP後會先經過原子化的步驟,所以在ICP-MS 中無法分辨不同物種,因此做物種分析時必須搭配分離工具進行分離。本研究利用毛細管電泳(Capillary electrophoresis,CE)、液相層析(Liquid chromatography,LC)分別對汞物種及鈷物種進行分離及分析應用。
毛細管電泳具有分離效率高、樣品及試劑量少等優點,因此被廣泛應用於生化、藥物分析及臨床醫學等領域上。第一部分研究係利用毛細管電泳系統透過CEI-100介面結合感應耦合電漿質譜儀於魚肉中的汞物種型態分析之應用,研究使用內徑75 μm、長80 cm的毛細管,以含0.01% m/v L-cysteine之10 mmol L-1Glycine(pH 10.5)作為分離電解質,在17 kV的分離電壓下,於800秒內成功分離甲基汞、乙基汞與無機汞,其滯留時間、波峰面積及波峰高度之再現性皆低於6.6%,甲基汞、乙基汞及無機汞的偵測極限分別為4.0、3.8及3.5 μg L-1。另外,本研究在CEI-100霧化器的輔助溶液中加入甲酸,除了保持電通路外,其碳基質能扮演電荷轉移的角色幫助汞游離,提升訊號,降低偵測極限。在最適化的甲酸濃度下,對汞訊號的S/N約可提升2倍。將本系統應用於樣品上的分析,分別使用兩種標準參考樣品(DORM-2、DOLT-3)及旗魚樣品,萃取方式採用微波輔助萃取,萃取試劑為2% m/v L-cysteine溶液,三個樣品的萃取回收率可達95~99%,添加回收率則在95~106%之間,證實本方法的實用性。
第二部分研究是以液相層析結合薄膜去溶劑系統(Membrane desolvation sample introduction system,ARIDUS)及感應耦合電漿質譜儀,對無機鈷、氰鈷胺素及氫氧鈷胺素等鈷物種分析之應用,本研究並搭配液相層析結合電噴灑質譜儀(Electrospray ionization spectrometry,ESI-MS)對樣品中的鈷物種結構進行結構鑑定。分離管柱採用逆相層析管柱(Reverse phase column),而鈷胺素與管柱作用力強,因此沖提液必須使用高濃度甲醇,但過高的有機溶劑濃度會壓抑分析訊號並使電漿不穩定,所以本篇在LC管柱末端與ICP-MS的連接上採用ARIDUS來解決使用高濃度甲醇的問題,此裝置藉由低流速的霧化器搭配加熱的薄膜系統以及逆向的掃除氣體(Sweep gas),藉以去除溶劑蒸氣,只讓分析物及少量溶劑進入電漿中,因此可以於高有機溶劑環境下穩定的操作ICP-MS。本實驗對動相流速、甲醇濃度及醋酸銨濃度等LC分離條件及ARIDUS系統中操作條件進行最適化後,無機鈷、氰鈷胺素及氫氧鈷胺素等三物種能在六分鐘之內分離完成,滯留時間、波峰面積及波峰高度之再現性皆低於4.2%,偵測極限的範圍於0.008-0.014 μg L-1之間。將以建立的系統應用於綠藻錠及維生素B群補給品中鈷物種之測定,萃取方式採用微波輔助萃取,萃取試劑為0.5% HNO3溶液,萃取效率皆可達98%以上,物種的添加回收率介於91~108%。最後利用液相層析結合電噴灑質譜儀對樣品進行分析,以樣品的二次質譜圖與標準品二次質譜圖比對也可以成功鑑定樣品中鈷物種的結構。
Abstract
none
目次 Table of Contents
目錄
論文摘要..............................................................................Ⅰ
謝誌......................................................................................Ⅲ
目錄......................................................................................Ⅳ
圖表目錄..............................................................................Ⅵ
第一章 毛細管電泳結合感應耦合電漿質譜儀於魚肉中汞物種型態分析應用

壹、汞.............................................................................................1
貳、毛細管電泳.....................................................................1
參、毛細管電泳與ICP-MS介面...........................................4
肆、汞物種分析的方法.........................................................7
伍、碳基質對元素增益的機制.............................................8
陸、實驗部分
一、儀器裝置...................................................8
二、試藥與溶液的配製.................................10
三、實驗操作.................................................11
柒、結果與討論
一、甲酸濃度對汞訊號的影響.....................14
二、毛細管電泳分離條件最適化.................17
三、毛細管電泳對甲基汞與無機汞分離條件再次探討..............................................................................32
四、真實樣品分析應用.................................38
捌、結論..............................................................................47
玖、參考文獻......................................................................48

第二章 液相層析結合感應耦合電漿質譜儀於鈷物種型態分析應用

壹、鈷..........................................................................................52
貳、鈷物種分析方法..........................................................56
參、薄膜去溶劑進樣裝置及其與液相層析之介面..........57
肆、電噴灑質譜儀..............................................................59
伍、實驗部分
一、儀器裝置......................................................................61
二、試藥與溶液的配製......................................................63
三、實驗過程......................................................................64
陸、結果與討論
一、液相層析與ARIDUS之介面設計..........70
二、液相層析分離條件之最適化.................70
三、薄膜去溶劑進樣系統操作的最適化.....76
四、重複性、檢量線與偵測極限.................81
五、電噴灑質譜儀操作參數最適化.............88
六、真實樣品的分析.....................................94
柒、結論............................................................................105
捌、參考文獻....................................................................106
 
圖表目錄
第一章 毛細管電泳結合感應耦合電漿質譜儀於魚肉中汞物種型態分析應用

圖1-1 毛細管電泳系統儀器示意圖...........................3
圖1-2 Laminar flow和flat flow流動模式的比較......5
圖1-3 CEI-100於CE與ICP-MS之間連接介面之儀器示意圖.................................................................................6
圖1-4 輔助溶液中甲酸濃度對無機汞訊號的變化.15
圖1-5 分離甲基汞及無機汞時,照射UV光對訊號的影響......................................................................................16
圖1-6 汞物種與L-cysteine之錯合反應..................18
圖1-7 不同種類之電解質對分析物分離之影響.....19
圖1-8 分離電解質之pH值對電泳分離之影響........21
圖1-9 分離電解質之濃度對電泳分離之影響.........22
圖1-10 毛細管長度對電泳分離之影響.....................25
圖1-11 分離電壓對電泳分離之影響.........................26
圖1-12 進樣時間對電泳分離之影響.........................27
圖1-13 經最適化條件後,CE-ICP-MS 系統對乙基汞、甲基汞及無機汞之電泳圖..........................................28
圖1-14 毛細管長度對甲基汞及無機汞的分離影響..........................................................................................33
圖1-15 分離電壓對甲基汞及無機汞分離之影響.....34
圖1-16 進樣時間對甲基汞及無機汞分離之影響.....35
圖1-17 經最適化條件後,CE-ICP-MS系統對甲基汞及無機汞分離之電泳圖......................................................36
圖1-18 魚肉標準參考樣品(NRCC DORM-2)的電泳分離圖..............................................................................42
圖1-19 魚肝標準參考樣品(NRCC DOLT-3)的電泳分離圖..............................................................................43
圖1-20 旗魚樣品的電泳分離圖.................................45

表1-1 ICP-MS與CE系統之實驗條件參數..............29
表1-2 汞物種的遷移時間及訊號的再現性.............30
表1-3 汞物種之校正曲線參數及偵測極限.............31
表1-4 ICP-MS與CE系統對甲基汞和無機汞分離之實驗條件參數......................................................................37
表1-5 甲基汞及無機汞之校正曲線參數及偵測極限..........................................................................................39
表1-6 以CE-ICP-MS測定標準參考樣品中汞物種含量及其回收率的結果..........................................................40
表1-7 以CE-ICP-MS對旗魚樣品進行汞物種定量..........................................................................................44
表1-8 實驗結果與其他文獻之比較.........................46

第二章 液相層析結合感應耦合電漿質譜儀於鈷物種型態分析應用

圖2-1 維生素B12的結構..........................................54
圖2-2 (A)維生素B12結構(B)偽維生素B12結構..........................................................................................55
圖2-3 薄膜去溶劑進樣系統之構造圖.....................58
圖2-4 電噴灑過程示意圖.........................................60
圖2-5 HPLC-ARIDUS-ICP-MS之系統示意圖.......62
圖2-6 實驗流程圖.....................................................67
圖2-7 微波輔助萃取的流程圖.................................69
圖2-8 改變分流比例對訊號的影響.........................71
圖2-9 動相流速對鈷物種分離之影響.....................73
圖2-10 甲醇濃度對鈷物種分離之影響.....................74
圖2-11 NH4OAc濃度對鈷物種分離之影響.............75
圖2-12 使用ARIDUS進樣系統探討Sweep gas flow rate對鈷分析訊號的影響...................................................77
圖2-13 使用ARIDUS進樣系統探討Nitrogen gas flow rate對鈷分析訊號的影響..........................................78
圖2-14 使用ARIDUS進樣系統探討霧化器溫度對鈷分析訊號的影響.................................................................79
圖2-15 使用ARIDUS進樣系統探討薄膜溫度對鈷分析訊號的影響.....................................................................80
圖2-16 HPLC-ARIDUS-ICP-MS系統經最適化後對三個鈷物種之層析圖..........................................................84
圖2-17 毛細管施加電壓的改變對OH-Cbl訊號的影響..........................................................................................89
圖2-18 毛細管施加電壓的改變對CN-Cbl訊號的影響..........................................................................................90
圖2-19 HPLC-ESI-MS之EIC及二次質譜圖.............92
圖2-20 綠藻錠樣品在不同萃取試劑之萃取效率.....95
圖2-21 綠藻錠樣品之層析圖.....................................97
圖2-22 維生素B群#1樣品之層析圖........................99
圖2-23 維生素B群#1的二次質譜圖......................100
圖2-24 維生素B群#2樣品之層析圖......................102
圖2-25 維生素B群#2之二次質譜圖......................103

表2-1 微波消化設定條件.........................................68
表2-2 ICP-MS、LC、ARIDUS系統之實驗條件參數..........................................................................................82
表2-3 鈷物種的滯留時間及訊號的再現性.............84
表2-4 鈷物種之校正曲線參數及偵測極限.............85
表2-5 實驗結果和其他文獻之比較.........................87
表2-6 ESI-MS系統最適化操作條件........................91
表2-7 三種營養補給品樣品中鈷之萃取效率.........96
表2-8 以LC-ICP-MS測定市售營養補給品中鈷物種含量及回收率的結果........................................................104
參考文獻 References
1. Kubáň, P.; Houserová, P.; Kubáň, P.; Hauser, P. C.; Kubáň, V., Mercury speciation by CE: A review. Electrophoresis, 2007, 28 (1-2), 58.
2. Nriagu, J. O., A global assessment of natural sources of atmospheric trace metals. Nature, 1989, 338 (6210), 47.
3. Kubánˇ, P.; Pelcová, P.; Margetínová, J.; Kubánˇ, V., Mercury speciation by CE: An update. Electrophoresis, 2009, 30 (1), 92.
4. Caruso, J. A.; Klaue, B.; Michalke, B.; Rocke, D. M., Group assessment: elemental speciation. Ecotoxicol. Environ. Saf., 2003, 56 (1), 32.
5. Jensen, S.; Jernelov, A., Biological Methylation of Mercury in Aquatic Organisms. Nature, 1969, 223 (5207), 753.
6. Gilmour, C. C.; Henry, E. A.; Mitchell, R., Sulfate stimulation of mercury methylation in freshwater sediments. Environ. Sci. Technol., 1992, 26 (11), 2281.
7. 行政院衛生署,“水產動物類衛生標準”, 民國九十八年十一月.
8. Jorgenson, J.; Lukacs, K., Capillary zone electrophoresis. Science, 1983, 222 (4621), 266.
9. Prange, A.; Schaumloffel, D., Determination of element species at trace levels using capillary electrophoresis-inductively coupled plasma sector field mass spectrometry. J. Anal. At. Spectrom., 1999, 14 (9), 1329.
10. Louise Armstrong, H. E.; Corns, W. T.; Stockwell, P. B.; O'Connor, G.; Ebdon, L.; Hywel Evans, E., Comparison of AFS and ICP-MS detection coupled with gas chromatography for the determination of methylmercury in marine samples. Anal. Chim. Acta, 1999, 390 (1-3), 245.
11. Chung, S. W. C.; Chan, B. T. P., A reliable method to determine methylmercury and ethylmercury simultaneously in foods by gas chromatography with inductively coupled plasma mass spectrometry after enzymatic and acid digestion. J. Chromatogr. A, 2011, 1218 (9), 1260.
12. Rodrigues, J. L.; Alvarez, C. R.; Farinas, N. R.; Nevado, J. J. B.; Barbosa, F.; Martin-Doimeadios, R. C. R., Mercury speciation in whole blood by gas chromatography coupled to ICP-MS with a fast microwave-assisted sample preparation procedure. J. Anal. At. Spectrom., 2011, 26 (2), 436.
13. Wan, C. C.; Chen, C. S.; Jiang, S. J., Determination of mercury compounds in water samples by liquid chromatography inductively coupled plasma mass spectrometry with an in situ nebulizer/vapor generator. J. Anal. At. Spectrom., 1997, 12 (7), 683.
14. Castillo, A.; Roig-Navarro, A. F.; Pozo, O. J., Method optimization for the determination of four mercury species by micro-liquid chromatography-inductively coupled plasma mass spectrometry coupling in environmental water samples. Anal. Chim. Acta, 2006, 577 (1), 18.
15. Vallant, B.; Kadnar, R.; Goessler, W., Development of a new HPLC method for the determination of inorganic and methylmercury in biological samples with ICP-MS detection. J. Anal. At. Spectrom., 2007, 22 (3), 322.
16. Chang, L. F.; Jiang, S. J.; Sahayam, A. C., Speciation analysis of mercury and lead in fish samples using liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A, 2007, 1176 (1-2), 143.
17. Tsoi, Y. K.; Tam, S.; Leung, K. S. Y., Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase microextraction coupled to LC-ICP-MS. J. Anal. At. Spectrom., 2010, 25 (11), 1758.
18. Medina, I.; Rubí, E.; Mejuto, M. C.; Cela, R., Speciation of organomercurials in marine samples using capillary electrophoresis. Talanta, 1993, 40 (11), 1631.
19. Carro-Díaz, A. M.; Lorenzo-Ferreira, R. A.; Cela-Torrijos, R., Capillary electrophoresis of methylmercury with injection by sample stacking. J. Chromatogr. A, 1996, 730 (1-2), 345.
20. Manganiello, L.; Arce, L.; Ríos, A.; Valcárcel, M., Piezoelectric screening coupled on line to capillary electrophoresis for detection and speciation of mercury. J. Sep. Sci., 2002, 25 (5-6), 319.
21. Yin, X. B., Dual-cloud point extraction as a preconcentration and clean-up technique for capillary electrophoresis speciation analysis of mercury. J. Chromatogr. A, 2007, 1154 (1-2), 437.
22. Yan, X. P.; Yin, X. B.; Jiang, D. Q.; He, X. W., Speciation of mercury by hydrostatically modified electroosmotic flow capillary electrophoresis coupled with volatile species generation atomic fluorescence spectrometry. Anal. Chem., 2003, 75 (7), 1726.
23. Li, Y.; Jiang, Y.; Yan, X. P., On-line hyphenation of capillary electrophoresis with flame-heated furnace atomic absorption spectrometry for trace mercury speciation. Electrophoresis, 2005, 26 (3), 661.
24. Lai, E. P. C.; Zhang, W.; Trier, X.; Georgi, A.; Kowalski, S.; Kennedy, S.; MdMuslim, T.; Dabek-Zlotorzynska, E., Speciation of mercury at ng/ml concentration levels by capillary electrophoresis with amperometric detection. Anal. Chim. Acta, 1998, 364 (1-3), 63.
25. 王俊元, “毛細管電泳電化學偵測法使用金汞膜微電極分析汞物種之研究”, 民國八十九年七月.
26. 黃文宣,“毛細管電泳以金微電極三電位脈衝安培法測定汞物種”, 民國九十七年七月.
27. Martin, L. G.; Jongwana, L. T.; Crouch, A. M., Capillary electrophoretic separation and post-column electrochemical detection of mercury and methyl mercury and applications to coal samples. Electrochim. Acta, 2010, 55 (14), 4303.
28. Silva da Rocha, M.; Soldado, A. B.; Blanco-Gonzalez, E.; Sanz-Medel, A., Speciation of mercury compounds by capillary electrophoresis coupled on-line with quadrupole and double-focusing inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2000, 15 (5), 513.
29. Tu, Q.; Qvarnström, J.; Frech, W., Determination of mercury species by capillary zone electrophoresis-inductively coupled plasma mass spectrometry: a comparison of two spray chamber–nebulizer combinations. The Analyst, 2000, 125 (4), 705.
30. Silva da Rocha, M.; Soldado, A. B.; Blanco, E.; Sanz-Medel, A., Speciation of mercury using capillary electrophoresis coupled to volatile species generation-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2001, 16 (9), 951.
31. Lee, T. H.; Jiang, S. J., Determination of mercury compounds by capillary electrophoresis inductively coupled plasma mass spectrometry with microconcentric nebulization. Anal. Chim. Acta, 2000, 413 (1-2), 197.
32. Allain, P.; Jaunault, L.; Mauras, Y.; Mermet, J. M.; Delaporte, T., Signal Enhancement of Elements Due to the Presence of Carbon-Containing Compounds in Inductively Coupled Plasma Mass-Spectrometry. Anal. Chem., 1991, 63 (14), 1497.
33. Larsen, E. H.; Sturup, S., Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation. J. Anal. At. Spectrom., 1994, 9 (10), 1099.
34. Llorente, I.; Gómez, M.; Cámara, C., Improvement of selenium determination in water by inductively coupled plasma mass spectrometry through use of organic compounds as matrix modifiers. Spectrochim. Acta, Part B, 1997, 52 (12), 1825.
35. Tormen, L.; Gil, R. A.; Frescura, V. L. A.; Martinez, L. D.; Curtius, A. J., Determination of trace elements in biological samples treated with formic acid by inductively coupled plasma mass spectrometry using a microconcentric nebulizer. Spectrochim. Acta, Part B, 2010, 65 (11), 959.
36. Zheng, C.; Li, Y.; He, Y.; Ma, Q.; Hou, X., Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. J. Anal. At. Spectrom., 2005, 20 (8), 746.
37. dos Santos, E. J.; Herrmann, A. B.; dos Santos, A. B.; Baika, L. M.; Sato, C. S.; Tormen, L.; Sturgeon, R. E.; Curtius, A. J., Determination of thimerosal in human and veterinarian vaccines by photochemical vapor generation coupled to ICP OES. J. Anal. At. Spectrom., 2010, 25 (10), 1627.
38. Deng, H.; Zheng, C.; Liu, L.; Wu, L.; Hou, X.; Lv, Y., Photochemical vapor generation of carbonyl for ultrasensitive atomic fluorescence spectrometric determination of cobalt. Microchem. J., 2010, 96 (2), 277.
39. Alonso-Rodríguez, E.; Moreda-Piñeiro, J.; López-Mahía, P.; Muniategui-Lorenzo, S.; Fernández-Fernández, E.; Prada-Rodríguez, D.; Moreda-Piñeiro, A.; Bermejo-Barrera, A.; Bermejo-Barrera, P., Pressurized liquid extraction of organometals and its feasibility for total metal extraction. TrAC, Trends Anal. Chem., 2006, 25 (5), 511.
40. Parker, J.; Bloom, N., Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 2005, 337 (1-3), 253.
41. 張嵐芳, “液相層析法結合感應耦合電漿質譜儀於生物樣品中汞及鉛物種分析之應用”, 民國九十六年七月.
42. Li, Y.; Jiang, Y.; Yan, X. P., On-line hyphenation of capillary electrophoresis with flame-heated furnace atomic absorption spectrometry for trace mercury speciation. Electrophoresis, 2005, 26 (3), 661.
43. Deng, B.; Xiao, Y.; Xu, X.; Zhu, P.; Liang, S.; Mo, W., Cold vapor generation interface for mercury speciation coupling capillary electrophoresis with electrothermal quartz tube furnace atomic absorption spectrometry: Determination of mercury and methylmercury. Talanta, 2009, 79 (5), 1265.
44. Li, B. H., Rapid speciation analysis of mercury by short column capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry. Analytical Methods, 2011, 3 (1), 116.
1. Dorothy Crowfoot Hodgkin, J. K., Maureen Mackay, Jenny Pickworth, Nature, 1956, 178, 64.
2. Kumar, S. S.; Chouhan, R. S.; Thakur, M. S., Trends in Analysis of Vitamin B12. Anal. Biochem., 2010, 398 (2), 139.
3. Herbert, V., Recommended Dietary Intakes (Rdi) of Vitamin-B12 in Humans. Am. J. Clin. Nutr., 1987, 45 (4), 671.
4. 林宜璁, 劉瑞瑤, 黃信彰, 老年人的維他命b12缺乏, 基層醫學, 2007, 22 (2), 70.
5. Polec-Pawlak, K.; Lipiec, E.; Ruzik, L.; Zhou, Y.; Jarosz, M., Study of Chicken Egg Protein Influence on Bioavailability of Vitamin B(12) by Sec-Icp Ms and Esi Ms. J. Anal. At. Spectrom., 2011, 26 (3), 608.
6. 行政院衛生署,“國民營養建康狀況調查1997~2002”, 民國九十一年.
7. 行政院衛生署,“國人膳食營養素參考攝取量”, 民國九十一年.
8. Taga, M. E.; Walker, G. C., Pseudo-B12 Joins the Cofactor Family. J. Bacteriol., 2008, 190 (4), 1157.
9. Dagnelie, P.; van Staveren, W.; van den Berg, H., Vitamin B-12 from Algae Appears Not to Be Bioavailable. Am. J. Clin. Nutr., 1991, 53 (3), 695.
10. Http://Zh.Wikipedia.Org/Wiki/File:Cobalamin.Png.
11. M. R. Hadjmohamm adi, V. S., Use of Solid Phase Extraction for Sample Clean-up and Preconcentration of Vitamin B12 in Multivitamin Tablet before Hplc-Uv, Uv and Atomic Absorption Spectrophotometry. J. Food Drug Anal., 2007, 15 (3), 285.
12. Yang, S. D.; Feng, Y. J.; Fu, W., Determination of Cobalamin in Chlorella Food by Cation Exchange Column and Graphite Furnace Atomic Absorption Spectrometry. J. Food Drug Anal., 2006, 14 (1), 50.
13. Gentili, A.; Caretti, F.; D'Ascenzo, G.; Marchese, S.; Perret, D.; Di Corcia, D.; Rocca, L. M., Simultaneous Determination of Water-Soluble Vitamins in Selected Food Matrices by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom., 2008, 22 (13), 2029.
14. Baker, S. A.; Miller-Ihli, N. J., Determination of Cobalamins Using Capillary Electrophoresis Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta, Part B, 2000, 55 (12), 1823.
15. Simionato, A. V. C.; Lanças, F. M.; Ruggiero, M. A., Separation of Water-Soluble Vitamins by Micellar Electrokinetic Capillary Chromatography in Pharmaceutical Samples. J. Liq. Chromatogr. Related Technol., 2006, 29 (3), 349
16. Chen, J. H.; Jiang, S. J., Determination of Cobalamin in Nutritive Supplements and Chlorella Foods by Capillary Electrophoresis−Inductively Coupled Plasma Mass Spectrometry. J. Agric. Food. Chem., 2008, 56 (4), 1210.
17. Chassaigne, H.; Lobinski, R., Determination of Cobalamins and Cobinamides by Microbore Reversed-Phase Hplc with Spectrophotometric, Ion-Spray Ionization Ms and Inductively Coupled Plasma Ms Detection. Anal. Chim. Acta, 1998, 359 (3), 227.
18. Yanes, E.; Millerihli, N., Cobalamin Speciation Using Reversed-Phase Micro-High-Performance Liquid Chromatography Interfaced to Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta, Part B, 2004, 59 (6), 891.
19. Pakin, C.; Bergaentzlé, M.; Aoudé-Werner, D.; Hasselmann, C., [Alpha]-Ribazole, a Fluorescent Marker for the Liquid Chromatographic Determination of Vitamin B12 in Foodstuffs. J. Chromatogr. A, 2005, 1081 (2), 182.
20. Luo, X.; Chen, B.; Ding, L.; Tang, F.; Yao, S., Hplc-Esi-Ms Analysis of Vitamin B12 in Food Products and in Multivitamins-Multimineral Tablets. Anal. Chim. Acta, 2006, 562 (2), 185.
21. Zafra-Gómez, A.; Garballo, A.; Morales, J. C.; García-Ayuso, L. E., Simultaneous Determination of Eight Water-Soluble Vitamins in Supplemented Foods by Liquid Chromatography. J. Agric. Food. Chem., 2006, 54 (13), 4531.
22. Makarov, A.; Szpunar, J., Species-Selective Determination of Cobalamin Analogues by Reversed-Phase HPLC with ICP-MS Detection. J. Anal. At. Spectrom., 1999, 14 (9), 1323.
23. Viñas, P.; López-García, I.; Bravo, M.; Hernández-Córdoba, M., Multi-Walled Carbon Nanotubes as Solid-Phase Extraction Adsorbents for the Speciation of Cobalamins in Seafoods by Liquid Chromatography. Anal. Bioanal. Chem., 2011, 1.
24. Ugarte, A.; Unceta, N.; Sampedro, M. C.; Goicolea, M. A.; Gomez-Caballero, A.; Barrio, R. J., Solid Phase Microextraction Coupled to Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry for the Speciation of Organotin Compounds in Water Samples. J. Anal. At. Spectrom., 2009, 24 (3), 347.
25. Yang, H. J.; Jiang, S. J.; Yang, Y. J.; Hwang, C. J., Speciation of Tin by Reversed Phase Liquid Chromatography with Inductively Coupled Plasma Mass Spectrometric Detection. Anal. Chim. Acta, 1995, 312 (2), 141.
26. Chang, L. F.; Jiang, S. J.; Sahayam, A. C., Speciation Analysis of Mercury and Lead in Fish Samples Using Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A, 2007, 1176 (1-2), 143.
27. Tu, Q.; Wang, T. B.; Welch, C. J.; Wang, P.; Jia, X. J.; Raab, C.; Bu, X. D.; Bykowski, D.; Hohenstaufen, B.; Doyle, M. P., Identification and Characterization of Isomeric Intermediates in a Catalyst Formation Reaction by Means of Speciation Analysis Using HPLC-ICPMS and HPLC-ESI-MS. Anal. Chem., 2006, 78 (4), 1282.
28. Http://Www.Cetac.Com/Nebulizers/Aridus_Two.Asp.
29. 賴佩珊,“感應耦合電漿質譜儀於水樣中砷與硒之物種分析以及魚肉樣品中有機錫物種之分析”, 民國九十三年六月.
30. Jensen, B. P.; Gammelgaard, B.; Hansen, S. H.; Andersen, J. V., Comparison of Direct Injection Nebulizer and Desolvating Microconcentric Nebulizer for Analysis of Chlorine-, Bromine- and Iodine-Containing Compounds by Reversed Phase Hplc with Icp-Ms Detection. J. Anal. At. Spectrom., 2003, 18 (8), 891.
31. Bluemlein, K.; Krupp, E. M.; Feldmann, J., Advantages and Limitations of a Desolvation System Coupled Online to HPLC-ICPQMS/ES-MS for the Quantitative Determination of Sulfur and Arsenic in Arseno-Peptide Complexes. J. Anal. At. Spectrom., 2009, 24 (1), 108.
32. Owen, S. C.; Lee, M.; Grissom, C. B., Ultra-Performance Liquid Chromatographic Separation and Mass Spectrometric Quantitation of Physiologic Cobalamins. J. Chromatogr. Sci., 2011, 49 (3), 228.
33. Viñas, P.; Campillo, N.; García, I. L.; Córdoba, M. H., Speciation of Vitamin B12 Analogues by Liquid Chromatography with Flame Atomic Absorption Spectrometric Detection. Anal. Chim. Acta, 1996, 318 (3), 319.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code