Responsive image
博碩士論文 etd-0725111-224828 詳細資訊
Title page for etd-0725111-224828
論文名稱
Title
開發現代質譜法在藥物分析、疾病檢驗及蛋白質研究上的新技術
Development of new methods for drugs analysis, disease diagnosis, and protein analysis by using modern mass spectrometry
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
260
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-16
繳交日期
Date of Submission
2011-07-25
關鍵字
Keywords
固相合成、生物相似性藥品、白蛋白尿、電噴灑雷射脫附游離質譜法、基質輔助雷射脫附游離質譜法
biosimilar, protein, albuminuria, MALDI, ELDI
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
本論文主要是為特定藥物的分析、疾病的檢驗及蛋白質的研究開發新的質譜方法。在開發藥物分析方法方面,我們針對一個化學組成極度複雜的統計型共聚胜肽藥物,建立一個可以比對原廠藥 (Innovator drug) 與生物相似性藥品 (Biosimilar) 之化學組成的質譜方法,並結合主成份分析法 (Principle Component Analysis, PCA) 及階層式集群分析 (Hierarchical Cluster Analysis, HCA) 等多變量統計法則的數據處理,進行其相似性的確認。並採用分類的策略,建立類別模型作為藥物品制控制的標準,利用分類的結果確認每一批次的產品。而針對此複雜藥品的分子量分佈方面,有別於該藥之原廠採用凝膠管柱層析的方法來訂定,本研究開發以基質輔助雷射脫附游離質譜法 (MALDI/MS) 來對此藥物進行分子量分佈一致性的量測,確認其對此類藥品的分子量具有鑑別度,並開發訊號處理方法來評估無法解析的質譜訊號,完成對原廠藥與生物相似性藥品的分子量相似性的評估。
在疾病診斷方面,本論文旨在延續之前所發展的檢驗 albuminuria 之質譜方法,並結合統計法則開發一個半定量 albuminuria 的策略。以尿液樣品不進行前處理為原則,即樣品內不加入任何內標物質,僅混以 MALDI 基質進行樣品結晶,即進行 MALDI-TOF/MS 的正離子線性模式分析。本研究的原理是利用不同濃度下白蛋白不同價數的離子 (一價、二價、三價、四價或五價) 在 MALDI-TOF/MS 偵測所得的離子訊號貢獻度不同的現象,採用主成份分析法及商用軟體中的 2D peaks distribution 程式運算質譜數據,先以添加不同濃度 albumin 的正常人尿液建立模型,再將白蛋白尿患者的尿液樣品以本系統分析,進行對尿液中的白蛋白半定量的工作。
在蛋白質的研究方法上,我們利用液態電噴灑雷射脫附游離質譜法 (Liquid Electrospray Laser Desorption Ionization Mass Spectrometry, Liquid-ELDI/MS) 在沒有任何前處理的情況下直接在各式溶液中確認 蛋白質分子,溶液種類包含酸、鹼、緩衝液、有機溶劑、或洗滌劑等溶液,既然在分析前不需要經過改變酸鹼性或溶劑組成等處理步驟,這項技術對於用來快速篩檢溶液中蛋白質分子結構的完整性是一個非常實用的方法。另一方面,若調整 liquid-ELDI 中電噴灑水溶液的組成,降低酸與有機溶劑的比例,則可以在偵測過程中保留蛋白質的三度空間結構,進而提供溶液中蛋白質的構形 (conformation) 訊息。
另外一個藥物分析的需求是開發一個可以直接偵測固相胜合成樣品的質譜法,確認每一反應步驟完全之後再進行下一步驟,以確保合成的產率與純度。本研究發展的即時監測固相胜肽合成過程的質譜系統 (Real-time monitor solid phase peptide synthesis by mass spectrometry),利用脈衝雷射及電噴灑的裝置,於大氣壓力下直接偵測連接於一般市售的固相支撐體及linker 上的胜肽產物,整個偵測流程只需要將待測的樹脂置於有機溶劑中,不用水解或分離等前處理流程,即可直接置於質譜儀入口處進行分析,在極短的時間內獲得該段胜肽產物的分子離子訊號,不會有酸性水解所造成碎片訊號。因此利用此快速又準確的特點,固相胜肽合成反應中每一個階段都可以即時用本系統確認產物,如此一來整個固相合成的品質會顯著的提升,對節省成本及提高產率也會有極大的幫助。
Abstract
New methods for drugs analysis, disease diagnosis, and protein analysis by using modern mass spectrometry are developed in this thesis. In drugs analysis, we develop a rapid assessment of molecular similarity between an extremely complex innovator product and a candidate biosimilar by mass spectrometry. Protease digestion combined with Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry were successfully used to peptides mapping and de novo peptides sequencing. Overall ion signals obtained by MALDI-TOF/MS were processed by two multivariate statistics including principle component analysis (PCA) and hierarchical clustering analysis. Based on the variances of the peptide profile, innovator product and normally synthesized biosimilar were grouped on the PCA score plot, while impure biosimilar or abnormally synthesized biosimilar were distinctly separated. The results of hierarchical cluster analysis also revealed high conformity between innovator product and normally synthesized biosimilar. Abnormally synthesized products, as a set of quality controller, could be discriminated from innovator product favorably. Another quality control strategy developed in this study is building classification model, batches of product is successfully evaluated. Furthermore, the similarity of molecular weight distribution between these complex drugs is determined.
Another target of drug analysis is to develop a vital analytical method to directly detect the peptides synthesized on the resin. Except an organic solvent is transformed to disperse the resin-peptides samples, no other sample pretreatments are required before the MS detection. When using conventional destructive analytical methods to characterize masses of compounds on the solid supports, acid hydrolysis or acid cleavage of the peptide molecules depart from insoluble resin is required. In consequence, side-reactions such as de-blocked or de-protected cause additional fragments in the system, and determination of the intermediates or products are confusing and difficult. Unlike these acid release methods, the molecular weight information of the intact peptide molecules can be obtained in our direct analyses system, and sample consumption is also great reduced. Moreover, our strategy performed the analysis in the ambient environment is more straightforward for real-time monitor reaction and quality control than those techniques in high vacuum system. This direct non-destructive on-line monitoring method would allow following step by step peptide solid-phase synthesis be well quality controlled.
In the disease diagnose part, MALDI-TOF mass spectrometry combined with statistics were used to perform semi-quantitative albuminuria diagnoses. Based on the fact that the contributions of singly, doubly, triply, and quadruply charged albumin ions from the samples were inflected according to the concentration change. The severity of albuminuria of patients can be estimated by 2D peaks distribution (peaks ranking by p-value) or supervised principal component analysis (PCA).
In protein analysis study, we use liquid electrospray laser desorption ionization mass spectrometry (liquid-ELDI/MS) to directly characterized the proteins stored in different solutions containing acids, bases, buffers, organic solvents, or detergents without extra sample pretreatment. A drop of the sample solution was applied on a stainless steel plate., and then the surface of the sample drop was irradiated with a pulsed laser. The laser energy absorbed by the metal plate and surrounding solvent led to the desorption of protein molecules or the formation of fine droplets containing protein molecules. The desorbed protein species were then post-ionized within an electrospray plume to generate the ESI-like protein ions. Since no pH or composition adjustment of the sample solution is needed, this technique is useful for rapid and high throughput screening of the proteins in a solution to check their integrality after storage or prior to further biochemical treatment. In addition,, native and denatured conformation of the proteins can be distinctly examined by using acid-free and organic solvent-reduced ESI solutions in liquid-ELDI.
目次 Table of Contents
論文審定書…………………………………………………………… ii
誌謝…………………………………………………………………… iii
中文摘要………………………………………………………….….. iv
英文摘要………………………………………..…………………… vi
第 一 章 緒論 ………………………………………………………… 1
1.1現代質譜法 ……………………………………………….……2
1.2蛋白質體學 …………………………………………………….12
1.3多變量統計分析於質譜數據的應用…………………………. 16
1.4生物相似性藥物……………………………………………….28
1.5固相胜肽合成反應…………………………………………… 30
1.6參考文獻…………………………………………………………33
第 二 章 開發一個鑑定及品管生物相似性藥品的質譜方法…42
2.1摘要…………………………………………………………… 42
2.2前言…………………………………………………………… 43
2.3實驗部分………………………………………………………46
2.4結果與討論………………………………………………………50
2.5結論……………………………………………………………115
2.6參考文獻………………………………………………………117
第 三 章 開發以基質輔助雷射脫附游離質譜法來測定複雜之生物相似性藥品的分子量………………………………………118
3.1摘要……………………………………………………………. 118
3.2前言……………………………………………………………119
3.3實驗部分………………………………………………………124
3.4結果與討論……………………………………………………127
3.5結論……………………………………………………………142
3.6參考文獻………………………………………………………143
第 四 章 開發一個可以診斷並半定量尿液中白蛋白的質譜方法…145
4.1摘要………………………………………………………… 145
4.2前言…………………………………………………………… 146
4.3實驗部分………………………………………………………153
4.4結果與討論……………………………………………………156
4.5結論……………………………………………………………176
4.6參考文獻………………………………………………………177
第 五 章 利用液態電噴灑雷射脫附游離質譜法直接偵測各式溶液中的蛋白質分子……………………………………………180
5.1摘要…………………………………………………………180
5.2前言…………………………………………………………… 181
5.3實驗部分………………………………………………………184
5.4結果與討論……………………………………………………188
5.5結論……………………………………………………………202
5.6參考文獻………………………………………………………203
第 六 章 即時監測固相胜肽合成反應的質譜系統…………………206
6.1摘要…………………………………………………………… 206
6.2前言…………………………………………………………… 207
6.3實驗部分……………………………………………………210
6.4結果與討論……………………………………………………213
6.5結論……………………………………………………………239
6.6參考文獻………………………………………………………240
參考文獻 References
第一章
1. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and
polymer analyses up to m/z 100000 by laser ionization time-of-flight mass
spectrometry. Rapid Comm. Mass Spectrom. 1988, 2, 151–153.
2. Karas, M.; Hillenkamp, F., Laser Desorption Ionization of Proteins with Molecular
Masses Exceeding 10000 Daltons. Ana.l Chem. 1988, 60 (20), 2299-2301.
3. Zenobi, R.; Knochenmuss, R., Ion formation in MALDI mass spectrometry. Mass
Spectrom. Rev. 1998, 17 (5), 337-366.
4. Advanced information on the Nobel Prize in Chemistry 2002, 9 October 2002
Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden
5. Schiller, J.; Su s, R.; Arnhold, J.; Fuchs, B.; Lesig, J.; Muller, M.; Petkovic, M.;
Spalteholz, H.; Zschornig, O.; Arnold, K. Matrix-assisted laser desorption and
ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and
phospholipid research Prog. . Lipid. Res. 2004, 43, 449-488
6. Zenobi, R., Laser-assisted analytical chemistry and mass spectrometry. Chimia.
2001, 55 (10), 773-777.
7. Piyadasa, C. K. G.; Hakansson, P.; Ariyaratne, T. R., A high resolving power
multiple reflection matrix-assisted laser desorption/ionization time-of-flight mass
spectrometer. Rapid Comm. Mass Spectrom. 1999, 13 (7), 620-624.
8. Shiea, J.; Huang, M. Z.; HSu, H. J.; Lee, C. Y.; Yuan, C. H.; Beech, I.; Sunner, J.,
Electrospray-assisted laser desorption/ionization mass spectrometry for direct
ambient analysis of solids. Rapid Comm. Mass Spectrom. 2005, 19 (24), 3701-3704.
9. Huang, M. Z.; Hsu, H. J.; Lee, L. Y.; Jeng, J. Y.; Shiea, L. T., Direct protein
detection from biological media through electrospray-assisted laser desorption
ionization/mass spectrometry. J. Proteome Res. 2006, 5 (5), 1107-1116.
10. Shiea, J.; Huang, M. Z.; Hsu, H. J.; Wu, C. I.; Lin, S. Y.; Ma, Y. L.; Cheng, T. L.,
Characterization of the chemical components on the surface of different solids with
electrospray-assisted laser desorption ionization mass spectrometry. Rapid Comm.
Mass Spectrom. 2007, 21 (11), 1767-1775.
11. Loo, J. A.; Peng, I. X.; Shiea, J.; Loo, R. R. O., Electrospray-assisted laser
desorption/ionization and tandem mass spectrometry of peptides and proteins. Rapid
Comm. Mass Spectrom. 2007, 21 (16), 2541-2546.
12. Lin, S. Y.; Huang, M. Z.; Chang, H. C.; Shiea, J.* Electrospray-Assisted Laser
Desorption Ionization (ELDI) and Tandem Mass Spectrometry for Peptides for
Peptides Characterize Organic Compounds Separated on Thin Layer
Chromatography Plates” Anal. Chem. 2007,79, 8789-8795.
13. Loo, J. A.; Peng, I. X.; Loo, R. R. O.; Shiea, J., Reactive-electrospray-assisted laser desorption/ionization for characterization of peptides and proteins. Anal. Chem.
2008, 80 (18), 6995-7003.
14. Shiea, J.; Yuan, C. H.; Huang, M. Z.; Cheng, S. C.; Ma, Y. L.; Tseng, W. L.; Chang,
H. C.; Hung, W. C., Detection of native protein ions in aqueous solution under
ambient conditions by electrospray laser desorption/ionization mass spectrometry.
Anal. Chem. 2008, 80 (13), 4845-4852.
15. Shiea, J.; Cheng, C. Y.; Yuan, C. H.; Cheng, S. C.; Huang, M. Z.; Chang, H. C.;
Cheng, T. L.; Yeh, C. S., Electrospray-assisted laser desorption/ionization mass
spectrometry for continuously monitoring the states of ongoing chemical reactions
in organic or aqueous solution under ambient conditions. Anal. Chem. 2008, 80 (20),
7699-7705.
16. Shiea, J.; Cheng, S. C.; Lin, Y. S.; Huang, M. Z., Applications of electrospray laser
desorption ionization mass spectrometry for document examination. Rapid Comm.
Mass Spectrom. 2010, 24 (2), 203-208.
17. Shiea, J.; Huang, M. Z.; Jhang, S. S.; Cheng, C. N.; Cheng, S. C., Effects of matrix,
electrospray solution, and laser light on the desorption and ionization mechanisms in
electrospray-assisted laser desorption ionization mass spectrometry. Analyst. 2010,
135 (4), 759-766.
18. Huang, M. Z.; Yuan, C. H.; Cheng, S. C.; Cho, Y. T.; Shiea, J., Ambient Ionization
Mass Spectrometry. Annu. Rev. Anal. Chem. 2010, 3, 43-65.
19. M. Z. Huang, Y. T. Cho, S. C. Cheng, J. Shiea* Ambient Ionization Mass
Spectrometry - A Tutorial. Anal. Chim. Acta. , 2011, in press.
20. Yamashita, M.; Fenn, J. B., Electrospray Ion-Source - Another Variation on the
Free-Jet Theme. J. Phys. Chem.-Us 1984, 88 (20), 4451-4459.
21. Yamashita, M.; Fenn, J. B., Negative-Ion Production with the Electrospray
Ion-Source. J. Phys. Chem.-Us 1984, 88 (20), 4671-4675.
22. Dole, M.; Mack, L. L.; Hines, R. L., Molecular Beams of Macroions. J. Chem. Phys.
1968, 49 (5), 2240
23. Iribarne, J. V.; Thomson, B. A., Evaporation of Small Ions from Charged Droplets.
J. Chem. Phys.1976, 64 (6), 2287-2294.
24. Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M., Ambient mass spectrometry.
Science 2006, 311 (5767), 1566-1570.
25. Cooks, R. G.; Venter, A.; Nefliu, M., Ambient desorption ionization mass
spectrometry. Trac-Trend Ana.l Chem. 2008, 27 (4), 284-290.
26. Van Berkel, G. J.; Pasilis, S. P.; Ovchinnikova, O., Established and emerging
atmospheric pressure surface sampling/ionization techniques for mass spectrometry.
J. Mass. Spectrom. 2008, 43 (9), 1161-1180.
27. Cole RB, ed. 1997. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications.New York: Wiley. 577 pp.
28. Harrison AG, ed. 1992. Chemical Ionization Mass Spectrometry. Boca Raton: CRC.
224 pp. 2nd ed.
29. Robb, D. B.; Covey, T. R.; Bruins, A. P. Atmospheric pressure photoionisation: An
ionization method for liquid chromatography-mass spectrometry. Anal. Chem. 2000,
72 (15), 3653-3659.
30. NiessenWMA, ed. 2006. Liquid Chromatography–Mass Spectrometry. Boca Raton:
CRC. 632 pp. 3rd ed.
31. Smith, R. D.; Barinaga, C. J.; Udseth, H. R., Improved Electrospray Ionization
Interface for Capillary Zone Electrophoresis - Mass-Spectrometry. Anal. Chem.
1988, 60 (18), 1948-1952.
32. Carroll, D. I.; Dzidic, I.; Stillwell, R. N.; Haegele, K. D.; Horning, E. C.,
Atmospheric-Pressure Ionization Mass-Spectrometry - Corona Discharge
Ion-Source for Use in Liquid Chromatograph Mass Spectrometer-Computer
Analytical System. Anal. Chem. 1975, 47 (14), 2369-2373.
33. Cody, R. B.; Laramee, J. A.; Durst, H. D., Versatile new ion source for the analysis
of materials in open air under ambient conditions. Anal. Chem. 2005, 77 (8),
2297-2302.
34. Covey, T. R.; Thomson, B. A.; Schneider, B. B., Atmospheric Pressure Ion Sources.
Mass Spectrom. Rev. 2009, 28 (6), 870-897.
35. Fernandez, F. M.; Harris, G. A.; Nyadong, L., Recent developments in ambient
ionization techniques for analytical mass spectrometry. Analyst 2008, 133 (10),
1297-1301.
36. Zenobi, R.; Chen, H. W.; Gamez, G., What Can We Learn from Ambient Ionization
Techniques? J. Am. Soc. Mass Spectrom. 2009, 20 (11), 1947-1963.
37. Pandey, A.; Mann, M., Proteomics to study genes and genomes. Nature 2000, 405
(6788), 837-846.
38. Aebersold, R.; Mann, M., Mass spectrometry-based proteomics. Nature 2003, 422
(6928), 198-207.
39. Wilkins, M. R.; Pasquali, C.; Appel, R. D.; Ou, K.; Golaz, O.; Sanchez, J. C.; Yan, J.
X.; Gooley, A. A.; Hughes, G.; HumpherySmith, I.; Williams, K. L.; Hochstrasser,
D. F., From proteins to proteomes: Large scale protein identification by
two-dimensional electrophoresis and amino acid analysis. Bio-Technol. 1996, 14 (1),
61-65.
40. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray
ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926),
64-71.
41. Hillenkamp, F.; Karas, M., Mass-Spectrometry of Peptides and Proteins by Matrix-Assisted Ultraviolet-Laser Desorption Ionization. Methods in Enzymology
1990, 193, 280-295.
42. McLafferty, F. W.; Han, X. M.; Jin, M.; Breuker, K., Extending top-down mass
spectrometry to proteins with masses greater than 200 kilodaltons. Science 2006,
314 (5796), 109-112.
43. Mann, M.; Hendrickson, R. C.; Pandey, A., Analysis of proteins and proteomes by
mass spectrometry. Annu. Rev. Biochem. 2001, 70, 437-473.
44. Marcotte, E. M., How do shotgun proteomics algorithms identify proteins? Nat.
Biotechnol. 2007, 25 (7), 755-757.
45. Wolters, D. A.; Washburn, M. P.; Yates, J. R., An automated multidimensional
protein identification technology for shotgun proteomics. Anal. Chem. 2001, 73 (23),
5683-5690.
46. MacCoss, M. J.; McDonald, W. H.; Saraf, A.; Sadygov, R.; Clark, J. M.; Tasto, J. J.;
Gould, K. L.; Wolters, D.; Washburn, M.; Weiss, A.; Clark, J. I.; Yates, J. R.,
Shotgun identification of protein modifications from protein complexes and lens
tissue. P. Natl. Acad. Sci. USA 2002, 99 (12), 7900-7905.
47. Wold, S., Chemometrics, why, what and where to next? J. Pharm. Biomed. Anal.
1991, 9 (8), 589-96.
48. Lavine, B.; Workman, J., Chemometrics. Anal. Chem. 2010, 82 (12), 4699-711.
49. Van Egeren, L. F., Multivariate statistical analysis. Psychophysiology 1973, 10 (5),
517-32.
50. Chia, K. S., Multivariate statistical analysis: a brief introduction. Ann. Acad. Med.
Singapore 1999, 28 (6), 879-80.
51. Jolliffe, I. T., 2002. Principal Component Analysis, 2nd ed., New York:
Springer-Verlag New York, Inc.
52. Everitt, B. S. 2011. Clustering Analysis, 5th ed., New York: John Wiley & Sons,
Inc.
53. Clinprotools 2.1 User Manual. Bruker Daltonics Inc.
54. Lee, T. A.; Headley, L. M.; Hardy, J. K., Noise-Reduction of Gas-Chromatography
Mass-Spectrometry Data Using Principal Component Analysis. Anal. Chem. 1991,
63 (4), 357-360.
55. Statheropoulos, M.; Pappa, A.; Karamertzanis, P.; Meuzelaar, H. L. C., Noise
reduction of fast, repetitive GC/MS measurements using principal component
analysis (PCA). Anal. Chim. Acta. 1999, 401 (1-2), 35-43.
56. Sinha, A. E.; Hope, J. L.; Prazen, B. J.; Fraga, C. G.; Nilsson, E. J.; Synovec, R. E.,
Multivariate selectivity as a metric for evaluating comprehensive two-dimensional
gas chromatography-time-of-flight mass spectrometry subjected to chemometric
peak deconvolution. J. Chromatogr. A 2004, 1056 (1-2), 145-154.
spectrometry data (vol 5, pg 281, 2005). Am. J. Pharmac. 2005, 5 (6), 407-407.
69. Li, N. J.; Liu, W. T.; Li, W.; Li, S. Q.; Chen, X. H.; Bi, K. S.; He, P., Plasma
metabolic profiling of Alzheimer's disease by liquid chromatography/mass
spectrometry. Clin. Biochem. 2010, 43 (12), 992-997.
70. Li, L. H.; Tang, H.; Wu, Z. B.; Gong, J. L.; Gruidl, M.; Zou, J.; Tockman, M.; Clark,
R. A., Data mining techniques for cancer detection using serum proteomic profiling.
Artif. Intell. Med. 2004, 32 (2), 71-83.
71. Jonsson, P.; Johansson, A. I.; Gullberg, J.; Trygg, J.; A, J.; Grung, B.; Marklund, S.;
Sjostrom, M.; Antti, H.; Moritz, T., High-throughput data analysis for detecting and
identifying differences between samples in GC/MS-based metabolomic analyses.
Anal. Chem. 2005, 77 (17), 5635-5642.
72. Plumb, R. S.; Granger, J. H.; Stumpf, C. L.; Johnson, K. A.; Smith, B. W.; Gaulitz,
S.; Wilson, I. D.; Castro-Perez, J., A rapid screening approach to metabonomics
using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal
variation in normal/Zucker obese rats and black, white and nude mice. Analyst 2005,
130 (6), 844-849.
73. Idborg, H.; Edlund, P. O.; Jacobsson, S. P., Multivariate approaches for efficient
detection of potential metabolites from liquid chromatography/mass spectrometry
data. Rapid Commun. Mass Spectrom. 2004, 18 (9), 944-954.
74. Ullsten, S.; Danielsson, R.; Backstrom, D.; Sjoberg, P.; Bergquist, J., Urine
profiling using capillary electrophoresis-mass spectrometry and multivariate data
analysis. J. Chromatogr. A 2006, 1117 (1), 87-93.
75. Plumb, R. S.; Stumpf, C. L.; Granger, J. H.; Castro-Perez, J.; Haselden, J. N.; Dear,
G. J., Use of liquid chromatography/time-of-flight mass spectrometry and
multivariate statistical analysis shows promise for the detection of drug metabolites
in biological fluids. Rapid Commun. Mass Spectrom. 2003, 17 (23), 2632-2638.
76. Plumb, R. S.; Stumpf, C. L.; Gorenstein, M. V.; Castro-Perez, J. M.; Dear, G. J.;
Anthony, M.; Sweatman, B. C.; Connor, S. C.; Haselden, J. N., Metabonomics: the
use of electrospray mass spectrometry coupled to reversed-phase liquid
chromatography shows potential for the screening of rat urine in drug development.
Rapid Commun. Mass Spectrom. 2002, 16 (20), 1991-1996.
77. Walch, A.; Rauser, S.; Deininger, S. O.; Hofler, H., MALDI imaging mass
spectrometry for direct tissue analysis: a new frontier for molecular histology.
Histochem. Cell Biol. 2008, 130 (3), 421-434.
78. Djidja, M. C.; Claude, E.; Snel, M. F.; Francese, S.; Scriven, P.; Carolan, V.; Clench,
M. R., Novel molecular tumour classification using MALDI-mass spectrometry
imaging of tissue micro-array. Anal. Bioanal. Chem. 2010, 397 (2), 587-601.
79. Eijkel, G. B.; Kaletas, B. K.; van der Wiel, I. M.; Kros, J. M.; Luider, T. M.; Heeren, R. M. A., Correlating MALDI and SIMS imaging mass spectrometric datasets of
biological tissue surfaces. Surf. Interface. Anal. 2009, 41 (8), 675-685.
80. 3Yao, I.; Sugiura, Y.; Matsumoto, M.; Setou, M., In situ proteomics with imaging
mass spectrometry and principal component analysis in the Scrapper-knockout
mouse brain. Proteomics 2008, 8 (18), 3692-3701.
81. McCombie, G.; Staab, D.; Stoeckli, M.; Knochenmuss, R., Spatial and spectral
correlations in MALDI mass spectrometry images by clustering and multivariate
analysis. Anal. Chem. 2005, 77 (19), 6118-6124.
82. Wu, Z. C.; Chen, H. W.; Wang, W. L.; Jia, B.; Yang, T. L.; Zhao, Z. F.; Ding, J. H.;
Xiao, X. X., Differentiation of Dried Sea Cucumber Products from Different
Geographical Areas by Surface Desorption Atmospheric Pressure Chemical
Ionization Mass Spectrometry. J. Agr. Food. Chem. 2009, 57 (20), 9356-9364.
83. Kalogeropoulos, N.; Konteles, S. J.; Troullidou, E.; Mourtzinos, I.; Karathanos, V.
T., Chemical composition, antioxidant activity and antimicrobial properties of
propolis extracts from Greece and Cyprus. Food Chem. 2009, 116 (2), 452-461.
84. Gong, F.; Liang, Y. Z.; Xu, Q. S.; Chau, F. T., Gas chromatography-mass
spectrometry and chemometric resolution applied to the determination of essential
oils in Cortex Cinnamomi. J. Chromatogr. A 2001, 905 (1-2), 193-205.
85. Goodacre, R.; York, E. V.; Heald, J. K.; Scott, I. M., Chemometric discrimination of
unfractionated plant extracts analyzed by electrospray mass spectrometry.
Phytochemistry 2003, 62 (6), 859-863.
86. Kim, S. W.; Ban, S. H.; Chung, H. J.; Choi, D. W.; Choi, P. S.; Yoo, O. J.; Liu, J. R.,
Taxonomic discrimination of higher plants by pyrolysis mass spectrometry. Plant.
Cell. Rep. 2004, 22 (7), 519-522.
87. Zhao, Y.; Chen, P.; Lin, L. Z.; Harnly, J. M.; Yu, L. L.; Li, Z. W., Tentative
identification, quantitation, and principal component analysis of green pu-erh, green,
and white teas using UPLC/DAD/MS. Food Chem. 2011, 126 (3), 1269-1277.
88. Yan, S. K.; Zhang, W. D.; Liu, R. H.; Zhan, Y. C., Chemical fingerprinting of
Shexiang Baoxin Pill and simultaneous determination of its major constituents by
HPLC with evaporative light scattering detection and electrospray mass
spectrometric detection. Chem. Pharm. Bull. 2006, 54 (7), 1058-1062.
89. Araujo, A. S.; da Rocha, L. L.; Tomazela, D. M.; Sawaya, A. C. H. F.; Almeida, R.
R.; Catharino, R. R.; Eberlin, M. N., Electrospray ionization mass spectrometry
fingerprinting of beer. Analyst 2005, 130 (6), 884-889.
90. de Souza, P. P.; Siebald, H. G. L.; Augusti, D. V.; Neto, W. B.; Amorim, V. M.;
Catharino, R. R.; Eberlin, M. N.; Augusti, R., Electrospray ionization mass
spectrometry fingerprinting of Brazilian artisan cachaca aged in different wood
casks. J. Agr. Food Chem. 2007, 55 (6), 2094-2102.
91. Liang, Y. Z.; Xie, P. S.; Chan, K., Quality control of herbal medicines. J.
Chromatogr. B 2004, 812 (1-2), 53-70.
92. Li, L.; Luo, G. A.; Liang, Q. L.; Hu, P.; Wang, Y. M., Rapid qualitative and
quantitative analyses of Asian ginseng in adulterated American ginseng preparations
by UPLC/Q-TOF-MS. J. Pharmaceut. Biomed. 2010, 52 (1), 66-72.
93. Moller, J. K. S.; Catharino, R. R.; Eberlin, M. N., Electrospray ionization mass
spectrometry fingerprinting of essential oils: Spices from the Labiatae family. Food
Chem. 2007, 100 (3), 1283-1288.
94. Li, J.; Wang, Y.; Fenwick, A.; Clayton, T. A.; Lau, Y. Y. K.; Legido-Quigley, C.;
Lindon, J. C.; Utzinger, J.; Holmes, E., A high-performance liquid chromatography
and nuclear magnetic resonance spectroscopy-based analysis of commercially
available praziquantel tablets. J. Pharmaceut. Biomed. 2007, 45 (2), 263-267.
95. Fenaille, F.; Visani, P.; Fumeaux, R.; Milo, C.; Guy, P. A., Comparison of mass
spectrometry-based electronic nose and solid phase MicroExtraction gas
chromatography mass spectrometry technique to assess infant formula oxidation. J.
Agr. Food Chem. 2003, 51 (9), 2790-2796.
96. Yeo, I.; Lee, J. W.; Kim, S., Application of Clustering Methods for Interpretation of
Petroleum Spectra from Negative-Mode ESI FT-ICR MS. B. Korean. Chem. Soc.
2010, 31 (11), 3151-3155.
97. Tan, B. J.; Hardy, J. K.; Snavely, R. E., Accelerant classification by gas
chromatography/mass spectrometry and multivariate pattern recognition. Anal.
Chim. Acta. 2000, 422 (1), 37-46.
98. Nowicki, J., An Accelerant Classification Scheme Based on Analysis by
Gas-Chromatography Mass-Spectrometry (Gc-Ms). J. Forensic Sci. 1990, 35 (5),
1064-1086.
99. Pan, Z. Z.; Gu, H. W.; Talaty, N.; Chen, H. W.; Shanaiah, N.; Hainline, B. E.;
Cooks, R. G.; Raftery, D., Principal component analysis of urine metabolites
detected by NMR and DESI-MS in patients with inborn errors of metabolism. Anal.
Bioanal. Chem. 2007, 387 (2), 539-549.
100. Chen, H. W.; Pan, Z. Z.; Talaty, N.; Raftery, D.; Cooks, R. G., Combining
desorption electrospray ionization mass spectrometry and nuclear magnetic
resonance for differential metabolomics without sample preparation. Rapid Commun.
Mass Spectrom. 2006, 20 (10), 1577-1584.
101. Chen, H. W.; Sun, Y. P.; Wortmann, A.; Gu, H. W.; Zenobi, R., Differentiation of
maturity and quality of fruit using noninvasive extractive electrospray ionization
quadrupole time-of-flight mass spectrometry. Anal. Chem. 2007, 79 (4), 1447-1455.
102. Chen, H. W.; Wortmann, A.; Zenobi, R., Neutral desorption sampling coupled to
extractive electrospray ionization mass spectrometry for rapid differentiation of bilosamples by metabolomic fingerprinting. J. Mass Spectrom. 2007, 42 (9),
1123-1135.
103. FDA Response to three Citizen Petitions against biosimilars
104. EMEA guideline on similar biological medicinal products
105. Mazzeo, J. R.; Xie, H. W.; Chakraborty, A.; Ahn, J.; Yu, Y. Q.; Dakshinamoorthy,
D. P.; Gilar, M.; Chen, W. B.; Skilton, S., Rapid comparison of a candidate
biosimilar to an innovator monoclonal antibody with advanced liquid
chromatography and mass spectrometry technologies. Mabs-Austin 2010, 2 (4),
379-394.
106. Wu, S. L.; Jiang, H. T.; Karger, B. L.; Hancock, W. S., Mass Spectrometric
Analysis of Innovator, Counterfeit, and Follow-On Recombinant Human Growth
Hormone. Biotechnol. Progr. 2009, 25 (1), 207-218.
107. Shin, D. S.; Oh, M. N.; Yang, H. C.; Oh, K. B., Biological characterization of
periconicins, bioactive secondary metabolites, produced by Periconia sp OBW-15. J.
Microbiol. Biotechn. 2005, 15 (1), 216-220.
108. Merrifield, R. B., Solid Phase Peptide Synthesis .1. Synthesis of a Tetrapeptide. J.
Am. Chem. Soc. 1963, 85 (14), 2149.
109. Rich, D. H.; Gurwara, S. K., Preparation of a New Omicron-Nitrobenzyl Resin for
Solid-Phase Synthesis of Tert-Butyloxycarbonyl-Protected Peptide Acids. J. Am.
Chem.Soc. 1975, 97 (6), 1575-1579.
110. Kates, A. S.; Albericio, F. Solid Phase Synthesis: A Practical Guide. Marcel
Dekker: New York, 2000.
111. Maux, D.; Enjalbal, C.; Martinez, J.; Aubagnac, J. L., Static secondary ion mass
spectrometry to monitor solid-phase peptide synthesis. J. Am. Soc. Mass Spectr
2001, 12 (10), 1099-1105.
第二章
1. Wallace, W. E.; Guttman, C. M., Data analysis methods for synthetic polymer mass
spectrometry: Autocorrelation. J. Res. Natl. Inst. Stan. 2002, 107 (1), 1-17.
2. Hanton, S. D. Mass spectrometry of polymers and polymer surfaces. Chem. Rev.
2001, 101 (2), 527-69.
3. Montaudo G, Robert P Lattimer, Mass Spectrometry Polymers, CRC PRESS
4. Michel W.F. Nielen, MALDI Time-Of-Flight Mass Spectrometry of Synthetic
Polymers, Mass Spectrometry Reviews 1999, 18, 309-344
5. Jackson, C.; Larsen, B.; McEwen, C., Comparison of most probable peak values as
measured for polymer distributions by MALDI mass spectrometry and by size
exclusion chromatography. Anal. Chem. 1996, 68 (8), 1303-1308.
6. Jackson, C. A.; Simonsick, W. J., Application of mass spectrometry to the
characterization of polymers. Curr. Opin. Solid. St. M. 1997, 2 (6), 661-667.
7. Marcotte, E. M., How do shotgun proteomics algorithms identify proteins?
Na .Biotechnol. 2007, 25 (7), 755-757.
8. Wolters, D. A.; Washburn, M. P.; Yates, J. R., 3rd, An automated multidimensional
protein identification technology for shotgun proteomics. Anal. Chem. 2001, 73 (23),
5683-90.
9. MacCoss, M. J.; McDonald, W. H.; Saraf, A.; Sadygov, R.; Clark, J. M.; Tasto, J. J.;
Gould, K. L.; Wolters, D.; Washburn, M.; Weiss, A.; Clark, J. I.; Yates, J. R., 3rd,
Shotgun identification of protein modifications from protein complexes and lens
tissue. Proc. Natl. Acad. Sci. U S A 2002, 99 (12), 7900-5.
10. Egelhofer, V.; Gobom, J.; Seitz, H.; Giavalisco, P.; Lehrach, H.; Nordhoff, E.,
Protein identification by MALDI-TOF-MS peptide mapping: a new strategy. Anal.
Chem. 2002, 74 (8), 1760-71.
11. Cottrell, J. S., Protein identification by peptide mass fingerprinting. Pept. Res. 1994,
7 (3), 115-24.
12. Yergey, A. L.; Coorssen, J. R.; Backlund, P. S.; Blank, P. S.; Humphrey, G. A.;
Zimmerberg, J.; Campbell, J. M.; Vestal, M. L., De novo sequencing of peptides
using MALDI/TOF-TOF. J. Am. Soc. Mass Spectr. 2002, 13 (7), 784-791.
13. Boersema, P. J.; Taouatas, N.; Altelaar, A. F.; Gouw, J. W.; Ross, P. L.; Pappin, D. J.;
Heck, A. J.; Mohammed, S., Straightforward and de novo peptide sequencing by
MALDI-MS/MS using a Lys-N metalloendopeptidase. Mol. Cell Proteomics 2009, 8
(4), 650-60.
14. Jolliffe, I. T.,Principal Component Analysis, 2nd ed. Springer-Verlag, 2002.
15. Everitt, B. S. Clustering Analysis, 5th ed., New York, John Wiley & Sons,
Inc. ,2011
第三章
1. Prokai L. 1990. New York: Marcel Dekker, Inc.
2. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray
Ionization-Principles and Practice. Mass Spectrom Rev 1990, 9 (1), 37-70.
3. Karas, M.; Hillenkamp, F., Laser desorption ionization of proteins with molecular
masses exceeding 10,000 daltons. Ana.l Chem. 1988, 60 (20), 2299-301.
4. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and
polymer analyses up to m/z 100000 by laser ionization time-of-flight mass
spectrometry. Rapid Comm. Mass Spectrom. 1988, 2, 151–153.
5. Wallace, W. E.; Guttman, C. M., Data analysis methods for synthetic polymer mass
spectrometry: Autocorrelation. J. Res. Natl. Inst. Stan. 2002, 107 (1), 1-17.
6. Hanton, S. D. Mass spectrometry of polymers and polymer surfaces. Chem. Rev.
2001, 101 (2), 527-69.
7. Montaudo, G.; Lattimer R. P. Mass Spectrometry Polymers. CRC PRESS Boca
Raton London New York Washington, D.C.
8. Allen, G.; Bevington J. Comprehensive Polymer Science, Pergamon, Oxford, 1989,
Vol 1 (Polymer Characterization).
9. Pethrick, R.A.; Dawkins, J.V., Modern Techniques for Polymer Characterization,
Wiley, New York, 1999.
10. Mitchell, J. Jr Applied Polymer Analysis and Characterization, Hanser Publ.,
Munich, 1987.
11. Bark, L.S.; Allen, N.S. Analysis of Polymers Systems, Applied Science, London,
1982.
12. Michel W.F. Nielen, MALDI Time-Of-Flight Mass Spectrometry of Synthetic
Polymers. Mass Spectrom. Rev. 1999, 18, 309-344
13. Schriemer, D. C.; Li, L., Detection of High Molecular Weight Narrow Polydisperse
Polymers up to 1.5 Million Daltons by MALDI Mass Spectrometry. Anal. Chem.
1996, 68 (17), 2721-5.
14. Schriemer, D. C.; Li, L., Mass discrimination in the analysis of polydisperse
polymers by MALDI time-of-flight mass spectrometry .1. Sample preparation and
desorption/ionization issues. Anal. Chem. 1997, 69 (20), 4169-4175.
15. Schriemer, D. C.; Li, L., Mass discrimination its the analysis of polydisperse
polymers by MALDI time-of-flight mass spectrometry .2. Instrumental issues.
Anal. Chem. 1997, 69 (20), 4176-4183.
16. Koenig, J.L., Spectroscopy of Polymers, 2nd edition, Elsevier, New York, 1999.
17. Provder, T.; Barth, H. G.; Urban, M.W. Chromatographic Characterization of
Polymers, ACS, Washington DC, 1995
18. Bovey, F.; Mirau, H., NMR of Polymers, Academic Press, New York, 1996.
19. Flory, P. Principles of Polymer Chemistry, Cornell University Press, Ithaca, New
York, 1971.
20. Billmeyer, F.W. Jr, Textbook of Polymer Science, Wiley, New York, 1971
21. Yau, W. W., Kirkland, J. J., and Bly, D. D. Modern Size-Exclusion Liquid
Chromatography. Wiley-Interscience, New York, 1979.
22. Holding, S. R. In Size Exclusion Chromatography (Hunt, B. J. and Holding, S. R.,
Eds.), Blackie, Glasgow and London, 1989, p. 42.
23. Garcia Rubio, L. H.; McGregor, J. F.; Hamielec, A. E. In Polymer Characterization,
(Craver, C. D., Ed.), American Chemical Society, Washington, DC, 1983, p. 311.
24. Jackson, C.; Larsen, B.; McEwen, C., Comparison of most probable peak values as
measured for polymer distributions by MALDI mass spectrometry and by size
exclusion chromatography. Anal. Chem. 1996, 68 (8), 1303-1308.
25. Montaudo, M. S.; Puglisi, C.; Samperi, F.; Montaudo, G., Molar mass distributions
and hydrodynamic interactions in random copolyesters investigated by size
exclusion chromatography matrix-assisted laser desorption ionization.
Macromolecules 1998, 31 (12), 3839-3845.
26. Montaudo, M. S.; Montaudo, G., Bivariate distribution in PMMA/PBA copolymers
by combined SEC/NMR and SEC/MALDI measurements. Macromolecules 1999,
32 (21), 7015-7022.
27. Danis, P. O.; Saucy, D. A.; Huby, F. J. Polym. Prepr. 1996, 37, 311-312
28. Montaudo, M. S.; Puglisi, C.; Samperi, F.; Montaudo, G. Rapid Commun. Mass
Spectrom. 1998, 12, 519-528.
29. Montaudo, G.; Montaudo, M. S.; Puglisi, C.; Samperi, F. Rapid Commun. Mass
Spectrom. 1995, 9, 1158-1163.
第四章
1. 阿部信一 著, 徐家杰 譯, 腎、泌尿疾病護理, 第一版, 五南圖書出版公
司, 2000。
2. Kashif, W.; Siddiqi, N.; Dincer, A. P.; Dincer, H. E.; Hirsch, S., Proteinuria: how to
evaluate an important finding. Cleve. Clin. J. Med. 2003, 70 (6), 535-7, 541-4,
546-7.
3. Kiernan, U. A.; Tubbs, K. A.; Nedelkov, D.; Niederkofler, E. E.; McConnell, E.;
Nelson, R. W., Comparative urine protein phenotyping using mass spectrometric
immunoassay. J. Proteome Res. 2003, 2 (2), 191-7.
4. Pang, J. X.; Ginanni, N.; Dongre, A. R.; Hefta, S. A.; Opitek, G. J., Biomarker
discovery in urine by proteomics. J. Proteome Res. 2002, 1 (2), 161-9.
5. Hampel, D. J.; Sansome, C.; Sha, M.; Brodsky, S.; Lawson, W. E.; Goligorsky, M.
S., Toward proteomics in uroscopy: urinary protein profiles after radiocontrast
medium administration. J. Am. Soc. Nephrol. 2001, 12 (5), 1026-35.
6. Fletcher, A. P.; Neuberger, A.; Ratcliffe, W. A., Tamm-Horsfall urinary glycoprotein.
The chemical composition. Biochem. J. 1970, 120 (2), 417-24.
7. Khan, A.; Packer, N. H., Simple urinary sample preparation for proteomic analysis.
J. Proteome Res. 2006, 5 (10), 2824-38.
8. D'Amico, G.; Bazzi, C., Pathophysiology of proteinuria. Kidney. Int. 2003, 63 (3),
809-25.
9. Carroll, M. F.; Temte, J. L., Proteinuria in adults: a diagnostic approach. Am. Fam.
Physician. 2000, 62 (6), 1333-40.
10. Barratt, T. M.; McLaine, P. N.; Soothill, J. F., Albumin excretion as a measure of
glomerular dysfunction in children. Arch. Dis. Child. 1970, 45 (242), 496-501.
11. Johnson, C. A.; Levey, A. S.; Coresh, J.; Levin, A.; Lau, J.; Eknoyan, G., Clinical
practice guidelines for chronic kidney disease in adults: Part II. Glomerular filtration
rate, proteinuria, and other markers. Am. Fam. Physician 2004, 70 (6), 1091-7.
12. Abitbol, C. L.; Chandar, J.; Onder, A. M.; Nwobi, O.; Montane, B.; Zilleruelo, G.,
Profiling proteinuria in pediatric patients. Pediatr. Nephrol. 2006, 21 (7), 995-1002.
13. Andersson, L.; Preda, I.; Hahn-Zoric, M.; Hanson, L. A.; Jodal, U.; Sixt, R.;
Barregard, L.; Hansson, S., Urinary proteins in children with urinary tract infection.
Pediatr. Nephrol. 2009, 24 (8), 1533-8.
14. Yagame, M.; Suzuki, D.; Jinde, K.; Yano, N.; Naka, R.; Abe, Y.; Nomoto, Y.; Sakai,
H.; Suzuki, H.; Ohashi, Y., Urinary albumin fragments as a new clinical parameter
for the early detection of diabetic nephropathy. Intern. Med. 1995, 34 (6), 463-8.
15. de Jong, P. E.; Gansevoort, R. T., Prevention of chronic kidney disease: the next step
forward! Nephrology (Carlton) 2006, 11 (3), 240-4.
16. Simerville, J. A.; Maxted, W. C.; Pahira, J. J., Urinalysis: a comprehensive review.
Am. Fam. Physician 2005, 71 (6), 1153-62.
17. Schwab, S. J.; Dunn, F. L.; Feinglos, M. N., Screening for microalbuminuria. A
comparison of single sample methods of collection and techniques of albumin
analysis. Diabetes Care 1992, 15 (11), 1581-4.
18. Greive, K. A.; Balazs, N. D.; Comper, W. D., Protein fragments in urine have been
considerably underestimated by various protein assays. Clin. Chem. 2001, 47 (9),
1717-9.
19. Pugia, M. J.; Wallace, J. F.; Lott, J. A.; Sommer, R.; Luke, K. E.; Shihabi, Z. K.;
Sheehan, M.; Bucksa, J. M., Albuminuria and proteinuria in hospitalized patients as
measured by quantitative and dipstick methods. J. Clin. Lab. Anal. 2001, 15 (5),
295-300.
20. Pugia, M. J.; Lott, J. A.; Kajima, J.; Saambe, T.; Sasaki, M.; Kuromoto, K.;
Nakamura, R.; Fusegawa, H.; Ohta, Y., Screening school children for albuminuria,
proteinuria and occult blood with dipsticks. Clin. Chem. Lab. Med. 1999, 37 (2),
149-57.
21. Penders, J.; Fiers, T.; Delanghe, J. R., Quantitative evaluation of urinalysis test strips.
Clin. Chem. 2002, 48 (12), 2236-41.
22. Comper, W. D.; Osicka, T. M.; Clark, M.; MacIsaac, R. J.; Jerums, G., Earlier
detection of microalbuminuria in diabetic patients using a new urinary albumin
assay. Kidney Int. 2004, 65 (5), 1850-5.
23. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T. Protein and
polymer analyses up to m/z 100000 by laser ionization time-of-flight mass
spectrometry. Rapid Comm. Mass Spectrom. 1988, 2, 151–153.
24. Hillenkamp, F.; Karas, M.; Beavis, R. C.; Chait, B. T., Matrix-assisted laser
desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 1991, 63 (24),
1193A-1203A.
25. Nelson, R. W.; Dogruel, D.; Williams, P., Mass determination of human
immunoglobulin IgM using matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry. Rapid Commun. Mass Spectrom. 1994, 8 (8), 627-31.
26. Hillenkamp, F.; Karas, M., Mass spectrometry of peptides and proteins by
matrix-assisted ultraviolet laser desorption/ionization. Methods Enzymol. 1990, 193,
280-95.
27. Pan, C.; Xu, S.; Zhou, H.; Fu, Y.; Ye, M.; Zou, H., Recent developments in methods
and technology for analysis of biological samples by MALDI-TOF-MS. Anal.
Bioanal. Chem. 2007, 387 (1), 193-204.
28. Wong, D. L.; Pavlovich, J. G.; Reich, N. O., Identification of peptides involved in
protein-DNA recognition by electrospray ionization and MALDI mass spectrometry. Faseb. J. 1997, 11 (9), A1314-A1314.
29. Lin, S. Y.; Shih, S. H.; Wu, D. C.; Lee, Y. C.; Wu, C. I.; Lo, L. H.; Shiea, J.,
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the
detection of hemoglobins as the protein biomarkers for fecal occult blood. Rapid
Commun. Mass Spectrom. 2007, 21 (20), 3311-6.
30. Wu, C. I.; Tsai, C. C.; Lu, C. C.; Wu, P. C.; Wu, D. C.; Lin, S. Y.; Shiea, J.,
Diagnosis of occult blood in human feces using matrix-assisted laser desorption
ionization/time-of-flight mass spectrometry. Clin. Chim. Acta. 2007, 384 (1-2),
86-92.
第五章
1. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray
ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926),
64-71.
2. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray
Ionization-Principles and Practice. Mass Spectrom Rev 1990, 9 (1), 37-70.
3. Smith, R. D.; Loo, J. A.; Edmonds, C. G.; Barinaga, C. J.; Udseth, H. R., New
developments in biochemical mass spectrometry: electrospray ionization. Anal
Chem 1990, 62 (9), 882-99.
4. Chait, B. T., Chemistry. Mass spectrometry: bottom-up or top-down? Science 2006,
314 (5796), 65-6.
5. Han, X.; Jin, M.; Breuker, K.; McLafferty, F. W., Extending top-down mass
spectrometry to proteins with masses greater than 200 kilodaltons. Science 2006,
314 (5796), 109-12.
6. Marcotte, E. M., How do shotgun proteomics algorithms identify proteins? Nat
Biotechnol 2007, 25 (7), 755-757.
7. Wolters, D. A.; Washburn, M. P.; Yates, J. R., 3rd, An automated multidimensional
protein identification technology for shotgun proteomics. Anal Chem 2001, 73 (23),
5683-90.
8. MacCoss, M. J.; McDonald, W. H.; Saraf, A.; Sadygov, R.; Clark, J. M.; Tasto, J. J.;
Gould, K. L.; Wolters, D.; Washburn, M.; Weiss, A.; Clark, J. I.; Yates, J. R., 3rd,
Shotgun identification of protein modifications from protein complexes and lens
tissue. Proc Natl Acad Sci U S A 2002, 99 (12), 7900-5.
9. Rovaris, M.; Inglese, M.; van Schijndel, R. A.; Sormani, M. P.; Rodegher, M.; Comi,
G.; Filippi, M., Sensitivity and reproducibility of volume change measurements of
different brain portions on magnetic resonance imaging in patients with multiple
sclerosis. J Neurol 2000, 247 (12), 960-5.
10. Mauldin, F. W., Jr.; Zhu, H. T.; Behler, R. H.; Nichols, T. C.; Gallippi, C. M., Robust
principal component analysis and clustering methods for automated classification of
tissue response to ARFI excitation. Ultrasound Med Biol 2008, 34 (2), 309-25.
11. Rovaris, M.; Bozzali, M.; Santuccio, G.; Iannucci, G.; Sormani, M. P.; Colombo, B.;
Comi, G.; Filippi, M., Relative contributions of brain and cervical cord pathology to
multiple sclerosis disability: a study with magnetisation transfer ratio histogram
analysis. J Neurol Neurosurg Psychiatry 2000, 69 (6), 723-7.
12. Kira, J., [Recent progress in treatment for multiple sclerosis]. Rinsho Shinkeigaku
2000, 40 (12), 1261-3.
13. Singh, S. M.; Upadhyay, A. K.; Panda, A. K., Solubilization at high pH results in improved recovery of proteins from inclusion bodies of E. coli. J Chem Technol Biot
2008, 83 (8), 1126-1134.
14. Shin, D. S.; Zuo, H.; Meng, L. J.; Ghate, M.; Hwang, K. H.; Cho, Y. K.;
Chandrasekhar, S.; Reddy, C. R., Microwave-assisted one-pot synthesis of
benzo[b][1,4]oxazin-3(4H)-ones via Smiles rearrangement. Tetrahedron Lett 2008,
49 (23), 3827-3830.
15. Benavente, F.; Sanz-Nebot, V.; Barbosa, J.; van der Heijden, R.; van der Greef, J.;
Hankemeier, T., CE-ESI-MS of biological anions in plastic capillaries at high pH.
Electrophoresis 2007, 28 (6), 944-9.
16. Bahr, U.; Deppe, A.; Karas, M.; Hillenkamp, F.; Giessmann, U., Mass-Spectrometry
of Synthetic-Polymers by Uv Matrix-Assisted Laser Desorption Ionization. Anal
Chem 1992, 64 (22), 2866-2869.
17. Pan, P.; Gunawardena, H. P.; Xia, Y.; McLuckey, S. A., Nanoelectrospray ionization
of protein mixtures: Solution pH and protein pI. Anal Chem 2004, 76 (4),
1165-1174.
18. Ghaemmaghami, S.; Fitzgerald, M. C.; Oas, T. G., A quantitative, high-throughput
screen for protein stability. Proc Natl Acad Sci U S A 2000, 97 (15), 8296-301.
19. Shiea, J.; Yuan, C. H.; Huang, M. Z.; Cheng, S. C.; Ma, Y. L.; Tseng, W. L.; Chang,
H. C.; Hung, W. C., Detection of native protein ions in aqueous solution under
ambient conditions by electrospray laser desorption/ionization mass spectrometry.
Anal Chem 2008, 80 (13), 4845-4852.
20. Shiea, J.; Cheng, C. Y.; Yuan, C. H.; Cheng, S. C.; Huang, M. Z.; Chang, H. C.;
Cheng, T. L.; Yeh, C. S., Electrospray-assisted laser desorption/ionization mass
spectrometry for continuously monitoring the states of ongoing chemical reactions
in organic or aqueous solution under ambient conditions. Anal Chem 2008, 80 (20),
7699-7705.
21. Cooks, R. G.; Ouyang, Z.; Takats, Z.; Wiseman, J. M., Detection Technologies.
Ambient mass spectrometry. Science 2006, 311 (5767), 1566-70.
22. Shiea, J.; Yuan, C. H.; Huang, M. Z.; Cheng, S. C.; Ma, Y. L.; Tseng, W. L.; Chang,
H. C.; Hung, W. C., Detection of native protein ions in aqueous solution under
ambient conditions by electrospray laser desorption/ionization mass spectrometry.
Anal Chem 2008, 80 (13), 4845-52.
23. Van Berkel, G. J.; Pasilis, S. P.; Ovchinnikova, O., Established and emerging
atmospheric pressure surface sampling/ionization techniques for mass spectrometry.
J Mass Spectrom 2008, 43 (9), 1161-80.
24. Huang, M. Z.; Yuan, C. H.; Cheng, S. C.; Cho, Y. T.; Shiea, J., Ambient ionization
mass spectrometry. Annu Rev Anal Chem (Palo Alto Calif) 2010, 3, 43-65.
25. Huang, M. Z.; Jhang, S. S.; Cheng, C. N.; Cheng, S. C.; Shiea, J., Effects of matrix, electrospray solution, and laser light on the desorption and ionization mechanisms in
electrospray-assisted laser desorption ionization mass spectrometry. Analyst 2010,
135 (4), 759-66.
26. Peng, I. X.; Ogorzalek Loo, R. R.; Shiea, J.; Loo, J. A.,
Reactive-electrospray-assisted laser desorption/ionization for characterization of
peptides and proteins. Anal Chem 2008, 80 (18), 6995-7003.
27. Chang, D. Y.; Lee, C. C.; Shiea, J., Detecting large biomolecules from high-salt
solutions by fused-droplet electrospray ionization mass spectrometry. Anal Chem
2002, 74 (11), 2465-9.
28. Shieh, I. F.; Lee, C. Y.; Shiea, J., Eliminating the interferences from TRIS buffer and
SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry.
J Proteome Res 2005, 4 (2), 606-12.
29. Chang, D. Y.; Lee, C. C.; Shiea, J., Detecting large biomolecules from high-salt
solutions by fused-droplet electrospray ionization mass spectrometry. Anal Chem
2002, 74 (11), 2465-2469.
30. Shieh, I. F.; Lee, C. Y.; Shiea, J., Eliminating the interferences from TRIS buffer and
SDS in protein analysis by fused-droplet electrospray ionization mass spectrometry.
J Proteome Res 2005, 4 (2), 606-612.
31. Heller, D. N.; Ngoh, M. A., Electrospray ionization and tandem ion trap mass
spectrometry for the confirmation of seven beta-lactam antibiotics in bovine milk.
Rapid Commun Mass Spectrom 1998, 12 (24), 2031-40.
第六章
1. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J.
Am. Chem. Soc. 1963, 85, 2149–2154
2. Rich D. H.; Gurwara. S.K. Preparation of a new o-nitrobenzyl resin for solid-phase
synthesis of tert-butyloxycarbonyl protected peptide acids. J. Am. Chem. Soc. 1975,
97, 1575-1579.
3. Kates, A. S.; Albericio, F. Solid Phase Synthesis: A PracticalGuide. Marcel Dekker:
New York, 2000.
4. Valerio, R. M.; Bray, A. M.; Maeji, N. J., Multiple peptide synthesis on acid-labile
handle derivatized polyethylene supports. Int. J. Pept. Protein. Res. 1994, 44 (2),
158-65.
5. Maux, D.; Enjalbal, C.; Martinez, J.; Aubagnac, J. L., Static secondary ion mass
spectrometry to monitor solid-phase peptide synthesis. J. Am. Soc. Mass Spectr.
2001, 12 (10), 1099-1105.
6. Fitzgerald, M. C.; Charles, K. H.; Shevlin, G.; Siuzdak, G. Bioorg. Med. Chem. Lett.
1996, 6, 979-982
7. Emmert-Streib, F., Exploratory analysis of spatiotemporal patterns of cellular
automata by clustering compressibility. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys.
2010, 81 (2 Pt 2), 026103.
8. Shiea, J.; Yuan, C. H.; Huang, M. Z.; Cheng, S. C.; Ma, Y. L.; Tseng, W. L.; Chang,
H. C.; Hung, W. C., Detection of native protein ions in aqueous solution under
ambient conditions by electrospray laser desorption/ionization mass spectrometry.
Anal. Chem. 2008, 80 (13), 4845-4852.
9. Cheng, C. Y.; Yuan, C. H.; Cheng, S. C.; Huang, M. Z.; Chang, H. C.; Cheng, T. L.;
Yeh, C. S.; Shiea, J., Electrospray-assisted laser desorption/ionization mass
spectrometry for continuously monitoring the states of ongoing chemical reactions
in organic or aqueous solution under ambient conditions. Anal. Chem. 2008, 80 (20),
7699-705.
10. Guillier, F.; Orain, D.; Bradley, M., Linkers and cleavage strategies in solid-phase
organic synthesis and combinatorial chemistry. Chem. Rev. 2000, 100 (6), 2091-158.
11. Lee, T. K.; Ryoo, S. J.; Lee, Y. S., A new method for the preparation of 2-chlorotrityl
resin and its application to solid-phase peptide synthesis. Tetrahedron Lett. 2007, 48
(3), 389-391.
12. Schneider, S. E.; Bray, B. L.; Mader, C. J.; Friedrich, P. E.; Anderson, M. W.; Taylor,
T. S.; Boshernitzan, N.; Niemi, T. E.; Fulcher, B. C.; Whight, S. R.; White, J. M.;
Greene, R. J.; Stoltenberg, L. E.; Lichty, M., Development of HIV fusion inhibitors.
J. Pept. Sci. 2005, 11 (11), 744-753.
13. Bray, B. L., Large-scale manufacture of peptide therapeutics by chemical synthesis.
Nat. Rev. Drug Discov. 2003, 2 (7), 587-593.
14. 吳思佑, 民國 99 年國立中山大學化學研究所碩士論文「開發大氣壓力質譜法
之樣品承載裝置」
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.208.72
論文開放下載的時間是 校外不公開

Your IP address is 18.217.208.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code