Responsive image
博碩士論文 etd-0725112-111033 詳細資訊
Title page for etd-0725112-111033
論文名稱
Title
一個有磷化銦鎵輔助吸收層的銅銦鎵硒薄膜太陽能電池
A CIGS Thin Film Solar Cell with an InGaP Secondary Absorption Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-16
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
銅銦鎵硒、輔助吸收層、磷化銦鎵、短路電流、開路電壓、轉換效率
CIGS, Conversion Efficiency, Open-Circuit Voltage, Short-Circuit Current, InGaP, Secondary Absorption Layer
統計
Statistics
本論文已被瀏覽 5667 次,被下載 560
The thesis/dissertation has been browsed 5667 times, has been downloaded 560 times.
中文摘要
本論文,在傳統銅銦鎵硒(CIGS)薄膜太陽能電池架構中分別在CIGS吸收層的下方和上方添加一層磷化銦鎵作為輔助吸收層。使傳統ZnO / CdS / CIGS / Mo成為ZnO / CdS / CIGS / InGaP / Mo和ZnO / CdS / InGaP / CIGS / Mo的架構,以提升光被吸收的機會。並分別調變輔助吸收層的厚度、鎵的比例和摻雜濃度做比較以尋找最佳參數。實驗結果發現,當使用最佳參數的輔助吸收層在CIGS下方時,在光波長600 nm ~ 1200 nm的外部量子效率有增加的趨勢。與傳統架構相比,在短路電流密度上增加了約9 %,同時轉換效率也增加了9 %;然而,當最佳參數的輔助吸收層在CIGS吸收層上方時,在光波長300 nm ~ 600 nm的外部量子效率有增加的趨勢。與傳統架構相比,在短路電流密度上增加了約7.7 %,開路電壓增加了約7.1 %,同時轉換效率也增加20.6 %。這表示當輔助吸收層在下方時則可以讓在吸收層未被吸收的光有再次被吸收的機會;然而,當輔助吸收層在吸收層上方時可以先吸收能量較大的光,減少吸收層的熱損失,達到提升轉換效率的效果。
Abstract
In this study, we add an additional layer above and under the CIGS absorber layer as a secondary absorption layer respectively. We made the conventional structure of ZnO/CdS/CIGS/Mo becomes the structure of ZnO/CdS/CIGS/InGaP/Mo and ZnO/CdS/InGaP/CIGS/Mo which can improve the conversion efficiency. And we translate the thickness proportion of Ga and the doping concentration to find out the best parameter. According to the simulation, the wavelength of EQE in 600 nm ~ 1200 nm for our proposed CIGS solar cell which the additional layer under CIGS layer has been improved when compared to the conventional CIGS solar cell. The short-circuit current density has been increased about 9 %. And the conversion efficiency has also been increased about 9 %.When the additional layer above the CIGS absorber layer, according to the simulation, the wavelength of EQE in 300 nm ~ 600 nm for our proposed CIGS solar cell is improved when compared with the conventional CIGS solar cell. The short-circuit current density has been improved about 7.7 %, the open-circuit voltage about 7.1 %, and the conversion efficiency about 20.6 %. The main reason is that when the InGaP absorption layer under the CIGS layer which can catch the light which can’t be absorbed by CIGS layer. The InGaP absorption layer above the CIGS layer which can catch the light immediately.
目次 Table of Contents
第一章、導論 1
1.1背景 1
1.1.1各種半導體材料太陽能電池概論 2
1.2動機 6
1.2.1抗反射層及透明導電膜 7
1.2.2緩衝層 8
1.2.3吸收層 9
1.2.4背電極 12
1.2.5額外增加的功能性架構 12
第二章、太陽能電池物理機制與基本運作原理 15
2.1.1光在能帶中的行為 15
2.1.2光學光譜 17
2.2.1太陽能電池的運作原理 18
2.2.2太陽能電池基本電性與效率 19
2.2.3太陽能電池的基本光學特性 21
2.3.1疊接的基本概念與限制 22
2.4.1表面粗糙化 24
2.4.2球形太陽能電池 25
第三章、以磷化銦鎵為銅銦鎵硒太陽能電池的輔助吸收層之製程 26
3.1.1銅銦硒的材料特性 26
3.1.2銅銦硒的光學特性 27
3.1.3磷化銦鎵的特性 28
3.1.4輔助吸收層CIGS太陽能電池架構 31
第四章、結果與討論 35
4.1原件模擬之物理模型與參數 35
4.2傳統架構與下方輔助吸收層改良之分析 36
4.2.1下方輔助吸收層厚度調變 37
4.2.2下方輔助吸收層鎵的化學組成比例調變 40
4.2.3下方輔助吸收層摻雜濃度調變 43
4.2.4下方輔助吸收層改良架構與傳統架構之比較 45
4.3傳統架構與上方輔助吸收層改良之分析 48
4.3.1上方輔助吸收層厚度調變 49
4.3.2上方輔助吸收層鎵的化學組成比例調變 52
4.3.3上方輔助吸收層摻雜濃度調變 56
4.3.4上方輔助吸收層改良架構與傳統架構之比較 59
結論 62
第五章、未來展望 63
參考文獻 64
參考文獻 References
[1] 聯合國開發計畫署,人類發展報告,2011年。
[2] 新科學家,1996年五月4日,第29頁。
[3] http://www.nrel.gov/ , NREL美國再生能源實驗室。
[4] Zhao, J. et al., "24% efficient PERL structure silicon solar cells," in proc. IEEE 21th Int. PVSC conf., pp. 333 – 335, 1990. vol.1
[5] Takamoto, T. et al., "World's highest efficiency triple-junction solar cells fabricated by inverted layers transfer process," in proc. IEEE 35th Int. PVSC conf., pp. 000412 – 000417, 2010.
[6] Guter, W. et al., "Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight," IEEE Appl. Phys. Lett., vol. 94 , no. 22, pp. 223504 - 223504-3, 2009.
[7] Geisz, J.F. et al., "Inverted GaInP / (In)GaAs / InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions," in proc. IEEE 33th Int. PVSC conf., pp. 1 – 5, 2008.
[8] Dimroth, F. et al., "Metamorphic GaInP/GaInAs/Ge triple-junction solar cells with >41 % efficiency," in proc. IEEE 34th Int. PVSC conf., pp. 001038 – 001042, 2009.
[9] Peter V.M. et al., " First Solar Polycrystalline CdTe Thin Film PV," in proc. IEEE 4th Int. WCPEC conf., pp. 2024 – 2027, 2006.
[10] 林明獻,太陽電池技術入門,2008年。
[11] Sundaramoorthy, R. et al., "Comparison of amorphous InZnO and polycrystalline ZnO:Al conductive layers for CIGS solar cells," in proc. IEEE 34th Int. PVSC conf., pp. 001576 – 001581, 2009.
[12] Edoff, M. et al., "Comparison of amorphous InZnO and polycrystalline ZnO:Al conductive layers for CIGS solar cells," in proc. IEEE 4th Int. WCPEC conf., pp. 396 – 399, 2006.
[13] Matsubara K. et al., "Cd-Free Wide Gap CuIn1-xGaxSe2 Solar Cells using Zn1-yMgyO Deposited by Pulsed Laser Deposition," in proc. IEEE 4th Int. Int. WCPEC conf., 2006.
[14] Huang, C.H. et al., "A comparative study of chemical-bath-deposited CdS, (Cd,Zn)S, ZnS, and In(OH)xSy buffer layer for CIGS-based solar cells," in proc. IEEE 28th Int. PVSC conf., pp. 696 – 699, 2000.
[15] Takayuki N. et al., "Cd free CIGS solar cells fabricated by dry processes," in proc. IEEE 29th Int. PVSC conf., pp. 656 – 659, 2002.
[16] Gordillo, C. et al., "CIGS thin film solar cells with InSe buffer layer", in proc. IEEE 3th Int. WCPEC conf., pp. 483 – 486, 2003. Vol.1
[17] Abou-Ras, D. et al., "Microstructural and chemical studies of interfaces between Cu(In,Ga)Se2 and In2S3 layers," Jpn. J. Appl. Phys., vol. 97, no.8, pp. 084908 - 084908-8, 2005.
[18] Amin, N. et al., "Physical and optical properties of In2S3 thin films deposited by thermal evaporation technique for CIGS solar cells," in proc. IEEE Int. CET conf., pp. 63 – 67, 2011.
[19] Lei, C. et al., "Effects of solution-grown CdS on Cu(InGa)Se2 grain boundaries," Jpn. J. Appl. Phys., vol. 108, no. 11, pp. 114908 - 114908-7, 2010.
[20] 張振昌,”化學水浴沉積法成長硫化鎘薄膜之研究”,2006年7月。
[21] Liu Y. et al., "Preparation of Cu(In,Ga)Se2 Thin Film by Non-Vacuum Mechanochemical and Spin-Coating Process," in proc. IEEE Int. APPEEC conf., pp. 1 – 4, 2011.
[22] Tung-Po H. et al., "Effects of residual copper selenide on CuInGaSe2 solar cells," in proc. IEEE 34th Int. PVSC conf., pp. 000052 – 000054, 2009.
[23] Hall, A. et al., "Epitaxial growth of very large grain bicrystalline Cu(In,Ga)Se2 thin films by a hybrid sputtering method," Jpn. J. Appl. Phys., vol. 103, no. 8, pp. 083540 - 083540-7, 2008.
[24] Ahn, S. J. et al., "Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles," Jpn. J. Appl. Phys., vol. 105, no. 11, pp. 113533 - 113533-7, 2009.
[25] Repins, L.L. et al., "Effect of maximum Cu ratio during three-stage CIGS growth documented by design of experiment," in proc. IEEE 31th Int. PVSC conf., pp. 311 – 314, 2005.
[26] Song, J. et al., "Material parameter sensitivity study on CIGS solar cell performance," in proc. IEEE 33th Int. PVSC conf., pp. 1 – 4, 2008.
[27] Mount, G. et al., "Investigation of differences between high and low efficiency CIGS solar cell structures using surface analytical techniques," in proc. IEEE 35th Int. PVSC conf., pp. 003466 – 003471, 2010.
[28] Repins, I. et al., "Short Communication: Accelerated Publication 19•9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill Factor," Progress in Photovoltaics: Research and Applications 16, 2008, pp. 235-239, 2008.
[29] Repins, I. et al., "Characterization of 19.9%-efficient CIGS absorbers," in proc. IEEE 33th int. PVSC conf., pp. 1 – 6, 2008.
[30] Jeong D. S. et al., "Structural quality of CIGS absorber layers via powder evaporation and solution spray deposition," in proc. IEEE 35th Int. PVSC conf., pp. 002503 – 002505, 2010.
[31] Chirila, A. et al., "Optimization of composition grading in Cu(In,Ga)Se2 for flexible solar cells and modules," in proc. IEEE 35th Int. PVSC conf., pp. 000656 – 000660, 2010.
[32] Contreras, M. et al., "Graded band‐gap Cu(In,Ga)Se2 thin‐film solar cell absorber with enhanced open‐circuit voltage," IEEE Appl. Phys. Lett., vol. 103, no. 13, pp. 1824 – 1826, 1993.
[33] Minchao Z. et al., "Numerical modeling of the CIGS thin film solar cell with varied defect density and Ga content," in proc. IEEE 3th Int. INEC conf., pp. 277 – 278, 2010.
[34] Morales-Acevedo, A. et al., "Physical concepts for improving solar cells based upon graded CuInGaSe2," in proc. IEEE 5th Int. ICEEE conf., pp. 503 – 507, 2008.
[35] Song, S.H. et al., "Structure optimization for a high efficiency CIGS solar cell," in proc. IEEE 35th Int. PVSC conf., pp. 002488 – 002492, 2010.
[36] Haug, V. et al., "CIGS solar cells with very thin absorber layers," in proc. IEEE 34th Int. PVSC conf., pp. 000763 – 000765, 2009.
[37] Chung, Y.D. et al., "The thickness effect of SiOx layer in CIGS thin-film solar cells fabricated on stainless-steel substrate," in proc. IEEE 35th Int. PVSC conf., pp. 003401 – 003402, 2010.
[38] Fujishima, D. et al., "High-performance HIT solar cells for thinner silicon wafers," in proc. IEEE 35th Int. PVSC conf., pp. 003137 – 003140, 2010.
[39] Antonio Luque and Steven Hegedus Handbook of Photovoltaic Science and Engineering, 2003.
[40] Minemoto, T. et al., "Spherical silicon solar cells fabricated by high speed dropping method," in proc. IEEE 31th Int. PVSC conf., pp. 963 – 966, 2005.
[41] Feng W.X., "Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductor ", Phys. Rev. Lett., vol. 106, no. 1, 2011.
[42] 邱秋燕,銅銦鎵硒(CIGS)太陽能電池非真空製程簡介,工業材料雜誌264期,2008年12月。
[43] 林家弘,”藉由成長在不同篇角度砷化鎵基板研究磷化鋁銦及磷化鎵之材料特性”,2005年7月。
[44] Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, pp. 37-61, 1999.
[45] Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, pp. 37-61, 1999.
[46] Goldberg Yu.A. Handbook Series on Semiconductor Parameters, vol.2, M. Levinshtein, S. Rumyantsev and M. Shur, ed., World Scientific, London, pp. 37-61, 1999.
[47] Sagol, B.E. et al., "Lifetime and performance of InGaAsP and InGaAs absorbers for low bandgap tandem solar cells," in proc. IEEE 34th Int. PVSC conf., pp. 001090 – 001093, 2009.
[48] Nicklas, J. W. et al., "Accurate ab initio predictions of III–V direct-indirect band gap crossovers," IEEE Appl. Phys. Lett., vol. 97 no. 9, pp. 091902 - 091902-3, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code