Responsive image
博碩士論文 etd-0725112-111847 詳細資訊
Title page for etd-0725112-111847
論文名稱
Title
具厚邊襯閘極氧化層負型金氧半負載的高速度非傳統單極性互補金氧半之研究
A Study of High-Speed Non-Classical Unipolar CMOS with a Thick Sidewall-Spacer Gate-Oxide NMOS Load
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-16
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
單極性互補金氧半、貫穿效應、平均傳輸延遲、共享輸出、集積密度
unipolar CMOS, punch-through current, shared-terminal output, propagation delay time, integration density
統計
Statistics
本論文已被瀏覽 5641 次,被下載 613
The thesis/dissertation has been browsed 5641 times, has been downloaded 613 times.
中文摘要
在本論文中,我們提出一個具厚邊襯閘極氧化層負型金氧半負載的高速度非傳統單極性互補金氧半反相器。此非傳統互補金氧半反相器的負載是由一個具貫穿效應的厚邊襯閘極氧化層負型金氧半電晶體取代傳統互補金氧半中的正型金氧半場效電晶體。在論文中主要是探討使用具貫穿效應的厚邊襯閘極氧化層負型金氧半電晶體為負載與負型金氧半場效電晶體為驅動器之非傳統互補式金氧半反相器的特性分析。
根據結果,本論文提出的非傳統互補式金氧半反相器有正確的邏輯特性,平均傳輸延遲與傳統互補式金氧半反相器比較改善20 %,這是因為此非傳統互補金氧半反相器是使用厚邊襯閘極氧化層負型金氧半負載的緣故。在製程上,由於都使用負型金氧半電晶體,在輸出端都是負型摻雜,且不需要N型井的製程。在佈局面積上,此架構擁有共享輸出和無須物理隔離製程,與傳統互補式金氧半反相器比較在佈局面積上可以減少41%,可提升元件的集積密度。
Abstract
In this thesis, we present a high-speed non-classical unipolar CMOS with a thick sidewall-spacer gate-oxide NMOS load. This unipolar CMOS is composed of a NMOS driver and a thick sidewall-spacer gate-oxide NMOS which replaces a PMOS as load. We focus on the investigation of punch-through current in unipolar CMOS trends. In addition, we also design a conventional CMOS for comparison.
According to the simulations, the logical characteristics of our proposed CMOS are valid, in which the average propagation delay time is improved 20 % compared with the conventional CMOS. This is due to the presence of a thick sidewall-spacer gate-oxide NMOS load. For the viewpoint of device fabrication, the N well process can also be eliminated. This means that the proposed NMOS load not only improves the CMOS speed, but also reduces the fabrication cost. Thus, because of the shared-terminal output, the layout area can be significantly decreased 41 %, in comparison with the conventional CMOS.
目次 Table of Contents
第一章 緒論 1
1.1 背景 1
1.2 動機 3
第二章 物理機制與元件操作原理 5
2.1 物理機制 5
2.1.1 貫穿效應 5
2.1.2 汲極和源極空間電荷區 6
2.1.3 閘極控制的空乏層 8
2.1.4 功函數差 8
2.1.5 平帶電壓 9
2.1.6 底限電壓 9
2.2.1 傳統互補式金氧半反相器架構和操作原理 11
2.2.2 厚邊襯閘極氧化層負型金氧半負載之非傳統單極性互補金氧半反相器設計和操作原理 15
第三章 元件架構設計與製程步驟 22
3.1 元件設計 22
3.2 實際製程步驟 23
第四章 結果與討論 26
4.1 元件模擬使用之物理模型 26
4.2 元件模擬電性結果之分析與討論 27
4.2.1 具厚邊襯閘極氧化層負型金氧半負載之非傳統單極性互補金氧半反相器 27
4.3 邏輯電路模擬 38
4.3.1 反或閘 (NOR Gate) 38
4.3.2 反及閘 (NAND Gate) 42
4.3.3 互斥或閘 (XOR Gate) 46
4.3.4 全加器(Full Adder) 48
4.3.5 靜態隨機存取記憶體(SRAM) 50
4.3.6 環形震盪器(Ring Oscillator) 51
4.3.7 品質因子(FOM)比較 55
4.4 佈局(Layout)比較 57
第五章 結論與未來展望 59
5.1結論 59
5.2 未來展望 59
參考文獻 60
附錄 63

參考文獻 References
[1]. W. Neil and H. David, CMOS VLSI Design: A Circuits and Systems Perspective, 3nd ed. Addision Wesley, 2004.
[2]. G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, Apr. 1965.
[3]. M. Haselman et al., “The Future of Integrated Circuits: A Survey of Nanoelectronics,” Proc. IEEE, vol. 98, no. 1, pp. 11–38, Jan. 2010.
[4]. R. K. Cavin et al., “Science and engineering beyond moore's law,” Proc. IEEE, vol. 100, pp. 1720–1749, May. 2012.
[5]. 林宏年, 呂嘉裕, 林鴻志, 黃調元, “局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS) 之材料、製程與元件特性分析(I),” 奈米通訊期刊, 第十二卷, 第一期, pp. 44-49.
[6]. 林宏年, 呂嘉裕, 林鴻志, 黃調元, “局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS) 之材料、製程與元件特性分析(II),” 奈米通訊期刊, 第十二卷, 第二期, pp. 18-22.
[7]. R. M. Huang et al., “Sub-32nm CMOS Technology Enhancement For Low Power Applications,” in VLSI Symp. Tech. Syst. Appl. Proc., 2009, pp. 86–87.
[8]. L. Gomez et al., “Enhanced Hole Mobility in High Ge Content Asymmetrically Strained-SiGe p-MOSFETs,” IEEE Electron Device Lett., vol. 31, no. 8, pp. 782–784, Aug. 2010.
[9]. O. Weber et al., “A Novel Locally Engineered (111) V-channel pMOSFET Architecture with Improved Drivability Characteristics for Low-Standby power (LSTP) CMOS Applications,” in VLSI Symp. Tech. Dig., 2005, pp. 156–157.
[10]. A. Majumdar et al., “Effects of Substrate Orientation and Channel Stress on Short-Channel Thin SOI MOSFETs,” IEEE Trans. Electron Devices, vol. 57, no. 9, pp. 2067–2072, Sep. 2010.
[11]. N. Xu et al., “Carrier-Mobility Enhancement via Strain Engineering in Future Thin-Body MOSFETs,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 318–320, Mar. 2012.
[12]. J. Oh et al., “SiGe CMOS on (110) Channel Orientation with Mobility Boosters: Surface Orientation, Channel Directions, and Uniaxial Strain,” in VLSI Symp. Tech. Dig., 2010, pp. 39–40.
[13]. S. Takagi, “(III–V/Ge)-On-Insulator CMOS technology,” in Proc. IEEE Int. SOI Conf., Oct. 2011.
[14]. H. Tsuchiya et al., “Role of Carrier Transport in Source and Drain Electrodes of High-Mobility MOSFETs,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 365–367, Apr. 2010.
[15]. T. P. Ma, “Proposes Unipolar CMOS,” Semiconductor International, Oct. 2008.
[16]. Y. C. Yeo et al, “Direct Tunneling Gate Leakage Current in Transistors with Ultrathin Silicon Nitride Gate Dielectric,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 540–542, Nov. 2000.
[17]. J.-H. Chen et al., “An Analytic Three-Terminal Band-to-Band Tunneling Model on GIDL in MOSFET,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1400–1405, Jul. 2001.
[18]. K. Roy et al., “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proc. IEEE, vol. 91, No. 2, pp. 11–38, Feb. 2003.
[19]. E. Gili et al., “Asymmetric Gate-Induced Drain Leakage and Body Leakage in Vertical MOSFETs With Reduced Parasitic Capacitance,” IEEE Trans. Electron Devices, vol. 53, no. 5, pp. 1080–1087, May. 2006.
[20]. X. Qi et al., “Efficient subthreshold Leakage Current Optimization,” IEEE Circuits Devices Mag., vol. 22, no. 5, pp. 39–47, Sep. 2006.
[21]. T. Nakamura et al., “Submicron Channel MOSFETs Logic Under Punchthrough,” IEEE J. Solid-State Circuits, vol. sc-13, no. 5, pp. 572-577, Oct. 1978.
[22]. J.-T. Lin et al., “Design theory and fabrication process of 90 nm Unipolar-CMOS,” Silicon Nanoelectronics Workshop, SNW, 2010.
[23]. D. A. Neamen, Fundamental of Semiconductor Physics and Devices, New York: McGraw-Hill, 2005.
[24]. S. M. Sze, Semiconductor Devices Physis and Technology, 2nd ed. New York: John Wiley & Sons, 2001.
[25]. C.-H. Sun et al., “Numerical study of non-classical unipolar CMOS with different embedded oxide and gate length,” Int. Symp. Next-Gener. Electron., ISNE - Conf. Program, 2010, pp.21-24.
[26]. F.-C. Hsu et al., “Simple Punchthrough Model for Short-Channel MOSFETs,” IEEE Trans. Electron Devices, vol. ED-30, no. 10, pp. 1354–1359, Oct. 1983.
[27]. A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4nd ed. New York: Oxford University Press, 1998.
[28]. ATHENA User’s Manual, SILVACO, Aug. 2010.
[29]. ATLAS User’s Manual, SILVACO, Sep. 2010.
[30]. S. M. Sze and K. K. Ng, Physics of Semiconductor Device, 3rd ed. New York: John Wiley & Sons, 2007.
[31]. S. M. Kang and Y. Leblebigi, CMOS Digital Integrated Circuits: Analysis and Design, 3nd ed. New York: McGraw- Hill Company, 2001.
[32]. M. Masahara et al., “Ultrathin Channel Vertical DG MOSFET Fabricated by Using Ion-Bombardment-Retarded Etching,” IEEE Trans. Electron Devices, vol. 51, no. 12, pp. 2078–2084, Dec. 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code