Responsive image
博碩士論文 etd-0725112-150100 詳細資訊
Title page for etd-0725112-150100
論文名稱
Title
使用寬能隙材料磷化鎵薄膜於矽基太陽能電池之研究 與探討
An Investigation of the Wide-Bandgap GaP Material used for Silicon-Based Solar Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-16
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
能帶彎曲、非晶矽、異質接面、磷化鎵、高開路電壓
Bandgap bending, a-Si:H, Heterojunction, GaP, High open-circuit voltage
統計
Statistics
本論文已被瀏覽 5735 次,被下載 640
The thesis/dissertation has been browsed 5735 times, has been downloaded 640 times.
中文摘要
本篇論文提出新架構磷化鎵/非晶矽/矽太陽能電池(GaP/a-Si:H/BulkSi solar
cell),利用能隙概念使得傳統磷化鎵/矽太陽能電池的開路電壓獲得改善。當磷化
鎵濃度提升時,會使能帶向下彎曲,使得載子容易被收集,提升短路電流密度。
且將非晶矽濃度上升時,能帶會向上彎曲,使得位能增加,進而提升開路電壓;
但是因為位能的增加,會使得載子傳輸受阻,使得短路電流密度大幅下降。因此,
將分別探討磷化鎵/非晶矽/矽之太陽能電池在高短路電流時與高開路電壓兩種情
況的特性。值得注意的是新電池的開路電壓在架構參數的最佳化之後可高達 0.758
V 以上,與傳統平面太陽能電池相比開路電壓增進 27.18 %。
此外,傳統磷化鎵/矽太陽能(GaP/BulkSi solar cell)電池中,還有許多細節
尚未被探討。因此本篇論文深入探討傳統使用寬能隙材料磷化鎵(Gallium
Phosphide, GaP)薄膜在矽晶圓上之太陽能電池(GaP/BulkSi solar cell)特性。由
於磷化鎵薄膜在短波 450 nm 以下的吸收率較好以及磷化鎵在矽基板上之反射率較
低的情況下,分別改善內部量子效率(Internal Quantum Efficiency, IQE)與外部量
子效率(External Quantum Efficiency, EQE),使得光子在太陽能電池內部更有效地
的被吸收而產生電子電洞對被收集,在與傳統平面矽基太陽能電池(PN_BulkSi
solar cell)相比可將短路電流密度提升 10 %。此磷化鎵在矽晶圓之太陽能電池最
佳化後可得:短路電流(Short-Circuit Current, J sc )達 21.864 mA/cm
2 ,開路電壓
(Open-Circuit Voltage, Voc)為0.624 V,填充因子(Fill Factor, FF)在82.4 %,轉
換效率為11.236 %。
Abstract
In this thesis, we propose a new structure of GaP/a-Si:H/BulkSi solar cell in which
the additional a-Si:H layer due to the concept of energy bandgap is used to improve the
open-circuit voltage. As the a-Si:H doping concentration is increased, the upward
bandgap bending is expected to be observed; hence, a high open-circuit voltage is
obtained. But in this situation, the upward bandgap bending also hinders the carrier
transport, leading a low short-circuit current density. It is worth noting that the proposed
solar cell can have a high open-circuit voltage of 0.758 V.
In addition, we carefully investigate the characteristics of wide-bandgap gallium
phosphide (GaP) material used for silicon-based solar cells. According to the simulated
results, the absorption of GaP is better than silicon with a wavelength below 450 nm.
Also, the GaP/BulkSi solar cell is shown to have a lower reflectivity value than the
conventional PN_BulkSi solar cell. Hence we can prove that the internal quantum
efficiency and external quantum efficiency are improved accordingly. As a result, the
short-circuit current density is increased about 10 %. In addition, the optimized
parameters of a GaP/BulkSi solar cell are as follows: the short-circuit current density is
21.264 mA/cm2, the open-circuit voltage is 0.624 V, the fill factor is 82.4 %, the
conversion efficiency is 11.236 %, respectively.
目次 Table of Contents
第一章 簡介 .............................................................................................................. 1
1.1 背景 ................................................................................................................... 1
1.2 太陽能電池種類與發展 ................................................................................... 2
1.3 文獻回顧 ........................................................................................................... 3
1.4 研究動機 ......................................................................................................... 12
第二章 太陽能電池理論與物理機制 .................................................................... 14
2.1 光電效應 ......................................................................................................... 14
2.2 光伏特效應 ..................................................................................................... 15
2.3 太陽能電池基本理論 ..................................................................................... 15
2.3.1 太陽輻射光譜 ...................................................................................... 15
2.3.2 太陽能電池產生電力之原理 .............................................................. 17
2.3.3 太陽能電池主要損失與重要參數 ...................................................... 20
2.4 復合機制 ......................................................................................................... 22
第三章 太陽能電池架構設計與製程 .................................................................... 25
3.1 傳統平面太陽能電池製程步驟 ..................................................................... 25
3.2 磷化鎵/矽太陽能電池製程步驟 .................................................................... 26
3.3 磷化鎵/非晶矽/矽太陽能電池製程步驟 ....................................................... 27
第四章 模擬結果與討論 ........................................................................................ 28
4.1 元件製程模擬之物理模型 ............................................................................. 28
4.2 元件製程模擬結果探討 ................................................................................. 30
4.2.1 傳統平面太陽能電池(PN_BulkSi solar cell) ................................ 30
4.2.2 磷化鎵/矽太陽能電池(GaP/Bulk Si solar cell) ............................. 34
4.2.3 磷化鎵/矽與傳統平面太陽能電池比較 ............................................. 39
4.2.4 磷化鎵/非晶矽/矽太陽能電池(GaP/a-Si:H/BulkSi solar cell) ...... 42
4.3 傳統平面太陽能電池、傳統磷化鎵/矽太陽能電池與新磷化鎵/非晶矽/矽太
陽能電池之比較 .................................................................................................... 54
第五章 總結 ............................................................................................................ 56
5.1 結論 ................................................................................................................. 56
5.2 未來展望 ......................................................................................................... 56
參考文獻 .................................................................................................................... 57
參考文獻 References
[1] B. Dudley, “Statistical review of world energy”, 2011.
[2] 翁敏航,太陽能電池,東華書局,2006。
[3] S. Kurtz, “Opportunities and challenges for development of a mature
concentrating photovoltaic power industry”, NREL , 2009.
[4] C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap
terrestrial solar cells”, J. Appl. Phys, vol. 51, pp. 4494-4500, 1980.
[5] P. T. Landsberg, G. Tonge, “Thermodynamic energy conversion efficiencies”, J.
Appl. Phys, vol. 51, pp. R1-R20, 1980.
[6] D. K. Schroder, “Carrier lifetimes in silicon”, IEEE Trans. Electron Devices, vol.
44, pp. 160-170, 1997.
[7] A. G. Aberle, “Surface passivation of crystalline silicon solar cells: A Review”,
Prog. Photovoltaics Res. Appl., vol. 8, pp. 473-487, 2000.
[8] S.R. Wenham, “Buried contact silicon solar cells”, Sol. Energ. Mater. Sol. Cells,
vol. 34, pp. 101-110, 1994.
[9] J. Zhao, “24.5% efficiency silicon PERT cells on MCZ substrates and 24.7%
efficiency PERL Cells on FZ Substrates”, Prog. Photovoltaics Res. Appl., vol. 7,
pp. 471-474, 1999.
[10] J. Zhao, “Recent advances of high-efficiency single crystalline silicon solar cells
in processing technologies and substrate materials”, Sol. Energ. Mater. Sol. Cells,
vol. 82, pp.53-64, 2004.
[11] F. A. Lindholm, J. A. Mazer, “Degradation of solar cell performance by areal
inhomogeneity”, Solid State Electron, vol. 23, pp. 967-971, 1980.
[12] M. B. Spitzer, “Very high-efficiency thin silicon p-n junction solar cells using
reflective surface”, conf. Rec. IEEE Photovoltaic Spec. Conf., pp. 375-380,
1980.
[13] B. E. Sagol, “Lifetime and performance of InGaAsP and InGaAs absorbers for
low bandgap tandem solar cells”, conf. Rec. IEEE Photovoltaic Spec. Conf., pp.
1090-1093, 2009.
[14] Y. C. Kao, “Electron and hole carrier mobilities for liquid phase epitaxially
grown GaP in the temperature range 200–550 K”, J. Appl. Phys., vol. 54, pp.
2468-2471, 1983.
[15] G. Zeidenbergs, “Si-GaP heterojunctions”, Solid State Electron, vol. 10, pp.
113-123, 1967.
[16] T. Katoda, “Heteroepitaxial grown of gallium phosphide on silicon”, J. Electron
Mater., vol. 9, pp. 783-796, 1980.
[17] S. R. Huang, “Window layer properties of GaP films grown on Si by liquid
phase epitaxy”, conf. Rec. IEEE Photovoltaic Spec. Conf., pp. 1-4, 2008.
[18] G. A. Landis, “Wide-bandgap epitaxial heterojunction windows for silicon solar
cells”, IEEE Trans. Electron Devices, vol. 37, pp. 372-381, 1990.
[19] J. F. Geisz, “40.8% efficient inverted triple-junction solar cell with two
independentlymetamorphic junctions”, Appl. Phys. Lett., vol. 93, pp.
123505-123505-3, 2008.
[20] W. Guter, “Current-matched triple-junction solar cell reaching 41.1% conversion
efficiency under concentrated sunlight”, Appl. Phys. Lett., vol. 94, pp.
223504-223504-3, 2009.
[21] A. Barnett, “Very High Efficiency Solar Cell Modules”, Prog. Photovoltaics Res.
Appl., vol. 17, pp. 75-83, 2009.
[22] J. L. Gray, “Efficiency of multijunction photovoltaic systems”, conf. Rec. IEEE
Photovoltaic Spec. Conf., pp. 1-6, 2008.
[23] S. R. Huang, “GaP films grown on Si by liquid phase epitaxy”, conf. Rec. IEEE
Photovoltaic Spec. Conf., pp. 241-243, 2009.
[24] S. R. Huang, “Gallium phosphide epitaxial films for silicon-based multi-junction
solar cells grown by liquid phase epitaxy”, conf. Rec. IEEE Photovoltaic Spec.
Conf., pp. 3343-3346, 2010.
[25] X. Lu, “Gallium phosphide solar cells for multi-juntion systems”, conf. Rec.
IEEE Photovoltaic Spec. Conf., pp. 968-971, 2009.
[26] A. C. Tamboli, “Conformal GaP layers on Si wire arrays for solar energy
applications”, Appl. Phys. Lett., vol. 97, pp. 221914-221914-3, 2010.
[27] A. C. Tamboli, “GaP/Si wire array solar cells”, conf. Rec. IEEE Photovoltaic
Spec. Conf., pp. 918-922, 2010.
[28] T. J. Grassman, “Control and elimination of nucleation-related defects in
GaP/Si(001) heteroepitaxy”, Appl. Phys. Lett., vol. 94, pp. 232106-232106-3,
2009.
[29] H. D‥oscher, “Indirect in situ characterization of Si(100) substrates at the initial
stage of III–V heteroepitaxy”, J. Cryst. Growth, vol. 315, pp. 16-21, 2009.
[30] S. Y. Lien, “Deposition and Characterization of High-Efficiency Silicon
Thin-Film Solar Cell by HF-CVD and OES Technology”, IEEE Trans. Electron
Devices, vol. 59, pp. 1245-1254, 2012.
[31] V. E. Ferry, “Improved red-response in thin-film a-Si:H solar cells with
soft-imprinted plasmonic back reflectors”, Appl. Phys. Lett., vol. 95, pp.
183503-183503-3, 2009.
[32] 蔡進譯,超高效率太陽能電池-從愛因斯坦的光電效應談起,物理雙月刊,
27 卷 5 期,2005。
[33] PVEDUCATION.ORG, http://pveducation.org/
[34] Silvaco, Atlas User’s Manual, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code