Responsive image
博碩士論文 etd-0725112-152139 詳細資訊
Title page for etd-0725112-152139
論文名稱
Title
二氧化鈦閘極氧化層之磷化銦蕭特基能障 金氧半電晶體元件研製與特性分析
Fabrication and characterization of InP Schottky barrier MOSFET with thin TiO2 gate oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
二氧化鈦、原子層沉積法、磷化銦、蕭特基氧半場效元件
InP, TiO2, ALD, Schottky barrier MOSFET
統計
Statistics
本論文已被瀏覽 5687 次,被下載 2
The thesis/dissertation has been browsed 5687 times, has been downloaded 2 times.
中文摘要
本研究利用原子層沉積系統 (ALD) 生長二氧化鈦薄膜於磷化銦基板上,作為蕭特基能障金氧半場效應電晶體元件 (Schottky barrier MOSFET) 之閘極氧化層。首先,對於現有二氧化鈦薄膜做品質改善的研究,使用原子沉積法的二氧化鈦與鋁的雙層結構來改善單層二氧化鈦氧化層。使用雙層結構可藉由氧化鋁自我清潔能力使得氧化層與基板界面得到更佳的改善,漏電流數值降至3.1 × 10-9 和 3.3 × 10-7 A/cm2 at ± 2.5 MV/cm。另外,未經硫化銨處理過的磷化銦基板與鋁金屬形成的蕭特基二極體結構,其蕭特基能障 (ΦBp)為0.806 eV,在經硫化銨處理過後,其蕭特基能障大幅上升至0.968 eV,意味會造成介面態密度的原生氧化層借由硫化銨處理去除,使得蕭特基能障不再受費米能階釘札(Fermi level pinning)的影響。關於蕭特基能障金氧半場效應電晶體元件的電性量測,其汲極電流 (Drain current) 為1.73 μA,對於單層二氧化鈦薄膜,會有汲極電流快速上升的現象,意味二氧化鈦薄膜有較小的崩潰電場。而在二氧化鈦與磷化銦基板間沉積氧化鋁薄膜,由於氧化鋁具有自我清潔 (self-cleaning) 與高崩潰電場的優點,亦可改善上述電流快速上升之現象。對於電性量測得到的結果比單層薄膜佳,汲極電流為1.37 μA 且沒有電流快速上升的現象,轉導值為 4.45×10-7 S/μm,移動率為202.3mm2/V-s 相較下有較佳的次臨界特性。與其他文獻比較,其導通能障 (ΦBn) 高度能高於一般金屬矽化物,所以限制了本身元件的特性,未來需對蕭特基接面做改善。
Abstract
In this study, the thin titanium oxide (TiO2) film deposited on InP substrate was prepared by atomic layer deposition (ALD), which was used as gate oxide of InP Schottky barrier MOSFET. First, aluminum oxide (Al2O3) by ALD can be used as improvement in oxide of TiO2. Al2O3 of ALD has self-cleaning which can improve interface between oxide and substrate, the leakage current densities can reach 3.1 × 10-9 and 3.3 × 10-7 A/cm2. The Schottky barrier height(ΦBp) of Al/InP with (NH4)2S treatment is 0.968 eV, which is higher than that of Al/InP without (NH4)2S treatment (0.806eV). The (NH4)2S solution is a moderate etchant to reduce surface oxides on InP. Therefore, Schottky barrier will not be influenced by Fermi level pinning. The electrical characteristics of Schottky barrier MOSFET with TiO2 as gate oxide were measured in this report. The drain current is 1.73μA. The drain current increases rapidly when drain voltage is over 1V, it indicates that breakdown field of TiO2 thin film is not high enough. Due to advantages of ALD-Al2O3, such as self-cleaning ability and high breakdown field, the TiO2/Al2O3 prepared by ALD structure was used to improve the problem mentioned above. The electrical characteristics are much improved compared with a single TiO2 film, and drain current can reach 1.37 μA. The rapid increase of drain current with the increased drain voltage is not observed. The transconductance and mobility are 4.45 × 10-7 S/μm and 202.3 mm2/V-s, respectively, and a good sub-threshold behavior is obtained. Compared with other researches, we can find that Schottky barrier in on-state is higher than that of silicide sample. It indicates the InP Schottky barrier MOSFET characteristics are limited by high Schottky barrier.
目次 Table of Contents
ACKNOWLEDGMENT i
摘 要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
1.Introduction 1
1-1 Developments in Gate Dielectric 1
1-2 Properties of TiO2 3
1-3 Comparison of deposition methods of TiO2 4
1-4 Advantages of ALD 5
1-5 Drawback of TiO2 for MOSFETs 6
1-6 Drawbacks of SB on III-V compound 7
1-7 Mechanism and the structure model of InP and GaAs with sulfur treatment 9
1-8 ALD Al2O3/TiO2 on (NH4)2S treated III-V compound semiconductor structure 11
1-9 Principle of Schottky barrier 12
1-10 III-V Schottky Barrier MOSFET 13
1-10-1 Operation principle of the metal S/D n-MOSFETs 15
2.Experiments 27
2-1 Titanium oxide is prepared by MOCVD and ALD 27
2-1-1 CVD theorem 27
2-1-2 Deposition system of MOCVD and ALD 28
2-1-3 Properties of source materials 30
2-2 Structure procedures and film depositions 31
2-2-1 III-V wafer cleaning and sulfidation procedures 31
2-2-2 Preparation of Al2O3/ TiO2 stack films 32
2-2-2-1 Growth parameters of ALD-TiO2 film 32
2-2-2-2 Growth parameters of ALD-Al2O3 film 32
2-2-3 Aluminum metal and In-Zn alloy cleaning processes 33
2-2-4 Electrodes fabrication 33
2-2-5 Preparations of Al/ GaAs and Al/ InP Schottky diodes with (NH4)2S treatment 33
2-2-6 Preparations of Ag/GaAs and Ag/InP Schottky diodes with (NH4)2S treatment 34
2-3 Characterization 34
2-3-1 Physical Properties 34
2-3-2 Electrical Properties 35
3.Characterization of ALD Al2O3/TiO2 film on InP 45
3-1 TEM cross section of Al2O3/TiO2/S-InP structure 45
3-2 I-V characteristics of Al2O3/TiO2 Stacked Dielectrics on (NH4)2S treated InP 45
3-3 C-V characteristics of Al2O3/TiO2 Stacked Dielectrics on (NH4)2S treated InP 47
3-4 Conclusion 48
4.Characterizations of metal/ GaAs and metal/ InP Schottky diodes with (NH4)2S treatment 53
4-1 Electrical characteristics of with Al/GaAs and Al/InP with (NH4)2S treatment (Al/S-GaAs and Al/S-InP) 53
4-2 Electrical characteristics of Ag/GaAs and Ag/InP with (NH4)2S treatment (Ag/S-GaAs and Ag/S-InP) 54
4-3 Conclusion 55
5.Enhancement-mode n-channel Schottky barrier MOSFET with ALD-TiO2 as gate oxide on S-InP 64
5-1 Fabrication process of enhancement-mode n-channel Schottky barrier MOSFET with ALD-TiO2 as gate oxide on S-InP 64
5-2 Electrical characteristics of enhancement-mode Schottky barrier MOSFET with ALD-TiO2 as gate oxide on S-InP 65
5-3 Conclusion 70
6.Conclusions 87
Publication List 89
References 91
參考文獻 References
Chapter 1
[1] http://www.intel.com/technology/mooreslaw/
[2] R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. Kukreja, A. K. Balamurugan, S. Rajagopalan, A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric, “Applied Surface Science, 187, p. 297, 2002.
[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, p 5243, 2001.
[4] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., 16, pp.1838-1849, 2001.
[5] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243, 2001.
[6] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217, 2002.
[7] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[8] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p.316, 1973.
[9] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[10] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[11] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and
MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90,
pp.5896-5900, 1986.
[12] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of
SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[13] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[14] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[15] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[16] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and
M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar
optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998.
[17] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[18] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium dioxide rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032,1995.
[19] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “ Effects of Thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[20] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[21] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[22] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[23] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[24] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[25] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[26] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[27] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[28] R. D. Shannon, and J. A. Pask,” Kinetics of the Anatase-Rutile Transformation” , J. Am. Ceram. Soc., vol. 48, p. 391,1965.
[29] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[30] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[31] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[32] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001.
[33] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[34] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[35] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[36] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[37] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[38] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat.Technol., vol. 155, pp. 141-145, 2002.
[39] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[40] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000.
[41] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U.
Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[42] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[43] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[44] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[45] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[46] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp.47-51,2001
[47] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[48] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[49] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[50] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000.
[51] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[52] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[53] T. Suntola, Mater.” Atomic layer epitaxy” , Sci. Rep. 4, 261 (1989).
[54] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[55] M. Leskela‥, M. Ritala,” Atomic layer deposition (ALD): from precursors to thin film structures”, Thin Solid Films 409, 138 (2002)
[56] M. Ritala, M. Leskela, J. P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[57] M. Ritala, K. Kukli, A. Rahtu, et al. ,” Atomic layer deposition (ALD): from precursors to thin film structures ”, Science 288 (2000) 319.
[58] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[59] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[60] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003.
[61] S.M. Sze, Physics of Semiconductor Devices. New York Wiley, 1981, pp. 379-390.
[62] Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, “S-passivated InP(100)-(1×1) surface prepared by a wet chemical process,” Appl. Phys. Lett., vol. 60, pp. 2669- 2671, 1992.
[63] C. Engler, J. Dittmar, T. Chasse, “Stability of sulfur induced reconstructions on InP(001) surfaces,” Surface Sci. vol. 495, pp. 55-67, 2001.
[64] M. K. Lee, C. F. Yen, and S. H. Lin, “Electrical Improvements of MOCVD-TiO2 on (NH4)2Sx-Treated InP with Postmetallization Annealing,” J. Electrochem. Soc., vol. 154, no. 10, pp. G229-G233, Aug. 2007.
[65] Y. Q. Wu, Y. Xuan, T. Shen, P. D. Ye, Z. Cheng and A. Lochtefeld, “Enhancement-mode InP n-channel metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Al2O3 dielectrics,” Appl. Phys. Lett., vol. 91, no. 2, pp. 022108-022108-3, July. 2007.
[66] Y. Hwang, R. E. Herbert, N. G. Rudawski, and S. Stemmer, “Analysis of trap state densities at HfO2/In0.53Ga0.47As interfaces,” Appl. Phys. Lett., vol. 96, no. 10, pp. 102910-102910-3, Mar. 2010.
[67] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Tran. Electron Devices, vol. 44, no. 1, pp. 104-109, Jan. 1997.
[68] Steven M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, pp. 111-131, Jan. 2010.
[73] T. Gougousi and J. W. Lacis, “Native oxide consumption during the atomic layer deposition of TiO2 films on GaAs (100) surfaces,” Thin Solid Films, vol. 518, no. 8, pp. 2006-2009, Aug. 2010.
[69] M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Appl. Phys. Lett., vol. 68, no. 8, pp. 1099-1101, Dec. 1996.
[70] R. Iyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B., vol. 6, no. 4, pp. 1174-1179, Jul. 1988.
[71] D. N. Gnoth, D. Wolfframm, A. Patchett, S. Hohenecker, D. R. T. Zahn, A. Leslie, I. T. McGovern, and D. A. Evans, “A comparison of S-passivation of III-V(001) surfaces using (NH4)2Sx and S2C12,” Appl. Surf. Sci., vol. 123-124, pp. 120-125, Jan. 1998.
[72] Z. L. Yuan, X. M. Ding, B. Lai, and X. Y. Hou, E. D. Lu, P. S. Xu, and X. Y. Zhang, “Neutralized (NH4)2S solution passivation of III–V phosphide surfaces,” Appl. Phys. Lett., vol. 73, no 20, pp. 2977-2979, Nov. 1998.
[73] H. Huang, X. Ren, X. Wang, Q. Wang, and Y. Huang, “Low-temperature InP/GaAs wafer bonding using sulfide-treated surface,” Appl. Phys. Lett., vol. 88, no. 6, pp. 061104-061104-3, Feb. 2006.
[74] Shinya Morikita, Tomoyuki Motegi and Hideaki Ikoma , “Improved Electrical Characteristics of Al2O3/InP Structure by Combination of Sulfur Passivation and Forming Gas Annealing,” Jpn. J. Appl. Phys. vol. 38, no. 12B, pp. L1512-L1514, Dec. 1999.
[75] Y. T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, and J. C. Lee,” Effects of fluorine incorporation into HfO2 gate dielectrics on InP and In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors,” Appl. Phys. Lett.,96, 253502 (2010).
[76] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N. Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys,” 23rd International Conference on IPRM 2011.
[77] Moongyu Jang,Yarkyeon Kim, Jaeheon Shin, and Seongjae Lee, Kyoungwan
Park, “A 50 nm-gate length erbium-silicided n-type Schottky barrier metal oxide
semiconductor field-effect transistor”, Appl. Phys. Lett., Vol. 84, No. 5,
741-743.
[78] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee,R. Nakane, Y. Urabe, N.
Miyata,T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S.
Takagi “Self-aligned Metal S/D InP MOSFETs using Metallic Ni-InP alloys”,
IPRM ,2011
[79] W.Saitoh, A. Itoh, S. Yamagami, and M. Asada, ”Analysis of short-channel
Schottky source/drain Metal-Oxide-Semiconductor field-effect transistor on
Silicon-on-Insulator substrate and demonstration of sub-50 nm n-type devices
with metal gate,” Jpn. J. Appl. Phys., Part1 38, 6226 (1991)
[80] Sheng-Pin Yeh, Chun-Hsing Shih, Jeng Gong and Chenhsin Lien” Latent noise
in Schottky barrier MOSFETs”, Journal of Statistical Mechanics: Theory and
Experiment.
Chapter 2
[1] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technol.,
pp. 512, 2000.
[2] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi,
and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[3] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67, 1998.
[4] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient
on the electrical-properties of TiO2 thin-film by metalorganic
chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[5] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface
control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),”
Thin Solid Film, vol. 377, pp. 766-771, 2000.
[6] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J.
Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by
metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549,
1993.
[7] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M.
Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by
MOCVD,” Thin Solid Film, vol. 322, pp. 63-67,1998.
[8] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin film by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[9] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon (100),” Thin Solid Film, vol. 377, pp.766-771, 2000.
[10] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing-agent than O2 for the postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol. 36, pp. 661-666, 1997.
[11] E. H. Rhoderick and R. H. Williams, Metal Semiconductor Contacts, 2nd Edn. Clarendon Press,Oxford, (1988).
[12] Y. P. SONG, R. L. VAN MEIRHAEGHE, W. H. LAFLER and F. CARDON, “On the Difference in Apparent Barrier Height as Obtained from Capacitance-Voltage and Current-Voltage-Temperature Measurements on Al/p-InP Schottky Barriers”, Solid-State Electronics. Vol. 29, No. 6, pp. 633638, 1986.
[13] M. S. Carpenter, M, R. Malloch, and T. E Dungan, “Effects of Na2S and (NH4)2S edge passivation treatments on the dark current‐voltage characteristics of GaAs pn diodes”, Semicond. Appl. Phys. Lett. 53, 66, 1988.
[14] Donald A. Neamen - Semiconductor Physics And Devices 3rd Ed [Mcgraw Hill 2003]
Chapter 3
[1] Yukinobu Shinoda and Takeshi Kobayashi, “Anomalous inversion channel formation in enhancement-mode InP metal-insulator semiconductor field effect transistors,” J. Appl. Phys., vol. 53, no. 10, pp.7033-7038, Oct. 1982.
[2] Y. T. Chen, H. Zhao, J. H. Yum, Y. Wang, and Jack C. Lee, “Metaloxide-
semiconductor field-effect-transistors on indium phosphide using HfO2 and silicon passivation layer with equivalent oxide thickness of 18 A,” Appl. Phys. Lett., vol. 94, no. 21, pp. 213505- 213505-3, May 2009.
[3]. K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken and H. Maes, “ Impact of weak Fermi-level pinning on the correct interpretation of III-V MOS C-V and G-V characteristics,” Microelectronic Engineering, vol. 84, no.9-10, pp. 2146-2149, May 2007.
Chapter 4
[1] A. Ahaitouf, A.Bath, E.Losson, E.Abarkan, “Stability of sulfur-treated n-InP Schottky structures, studied by current-voltage measurements”, Materials Science and Engineering, B52, 208-215, 1998.
[2] Haruhiro Oigawa, Jia-Fa Fan, Yasuo Nannichi, Hirohiko Sugahara and Masaharu Oshima, “Universal passivation effect of (NH4)2S treatment on the Surface of III-V compound semiconductors”, Jpn . J. Appl. Phys.,vol.30, pp. L322-325, 1991.
[3] J.R.Waldrop,”Direct variation of metal-GaAs Schottky barrier height by the influence of interface S,Se, and Te”,Appl. Phys. Lett47 (12),1985
[4] J.R.Waldrop,”Influence of S and Se on the Schottky-barrier height and interface chemistry of Au contacts to GaAs ”, J. Vac. Sci. Technol. B3,1985
[5] H. Mazari, Z. Benamara, K. Ameur, N. Benseddik, O. Bonnaud, R. Olier, B.Gruzza,” Influence of Ru3+ ions at Al/GaAs interface on Schottky diodes”, Int. J. Nanoelectronics and Materials, 2 ,147-156 (2009)
[6] Sezai Asubay,” The electrical characteristics of Al/p-InP Schottky contacts”, Microelectronic Engineering, 88, 109–112 (2011)
[7] N.Newman, K.K. Chin, W.G. Petro, T. Kendelewicz,M.D.Williams, C.E. McCants, and W. E. Spicer, “Annealing of intimate Ag, Al, and Au-GaAs Schottky barriers”, J.Vac.Sci.Technol.A3,1985.
[8] M.S. Carpenter,M.R. Melloch, and T.E. Dungan,”Schottky barrier formation on (NH4)2S-treated n- and p-type(100)GaAs” ,Appl. Phys. Lett 53 (1),1988
Chapter 5
[1] S. C. Sun, and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[2] Moongyu Jang, Yarkyeon Kim, Jaeheon Shin, Seongjae Lee, and Kyoungwan Park,” Novel properties of erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field effecttransistors”, JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.4, NO.2, JUNE, 2004.
[3] S.M. Sze, Physics of Semiconductor Devices. New York Wiley, 1981, pp. 379-390.
[4] H. D. Lee, Characterization of shallow silicided junctions for sub-quarter micron ULSI technology——extraction of silicidation induced Schottky contact area, , IEEE Trans. Electron Devices, vol. 47, pp. 762-767, Apr. 2000.
[5] H. C. Lin, P. D. Ye, G.D. Wilk, “Current transport properties of atomic layer deposited ultra thin Al2O3 on GaAs”, Solid–State Electronics, 50, (2006) 1012–1015.
[6] A. Ahaitouf, A.Bath, E.Losson, E.Abarkan, “Stability of sulfur-treated n-InP Schottky structures, studied by current-voltage measurements”, Materials Science and Engineering, B52, 208-215, 1998.
[7] Munehiro Sugiyama, Norikuni Yabumoto, Satoshi Maeyama and Masaharu Oshima, “Annealing Effects on (NH4)2Sx-Treated GaAs(001) and InP(001) Surface ”, Jpn. J. Appl. Phys., Vol. 34, pp. L1588-1590, 1995.
[8] Haruhiro Oigawa, Jia-Fa Fan, Yasuo Nannichi, Hirohiko Sugahara and Masaharu Oshima, “Universal passivation effect of (NH4)2S treatment on the Surface of III-V compound semiconductors”, Jpn . J. Appl. Phys.,vol.30, pp. L322-325, 1991.
[9] J.R.Waldrop,”Influence of S and Se on the Schottky-barrier height and interface chemistry of Au contacts to GaAs ”, J. Vac. Sci. Technol. B3,1985.
[10] Shiyang Zhu, Jingde Chen, M.F Li,S.J Lee, Jagar Singh, C.X Zhu, Anyan Du, C.H.Tung, Albert Chin,and D.L Kwong,”N-Type Schottky barrier source/drain MOSFET using Ytterbium silicide”,IEEE Electron device letter, Vol.25, No.8, (2004).
[11] SangHyeon Kim, Masafumi Yokoyama, Noriyuki Taoka, Ryo Iida, Sunghoon
Lee,Ryosho Nakane, Yuji Urabe,Noriyuki Miyata, Tetsuji Yasuda, Hisashi
Yamada,Noboru Fukuhara, Masahiko Hata, Mitsuru Takenaka, and Shinichi
Takagi ,“Self-aligned metal source/drain InP n–metal–oxide -semiconductor
field-effect transistors using Ni–InP metallic alloy”, Appl. Phys. Lett. 98, 243501
(2011)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.128.199.162
論文開放下載的時間是 校外不公開

Your IP address is 3.128.199.162
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code