Responsive image
博碩士論文 etd-0725112-152843 詳細資訊
Title page for etd-0725112-152843
論文名稱
Title
以水溶液法備製氧化鋅奈米針於光電元件之應用
Applications of Zinc Oxide Nanotip Prepared by Aqueous Solution Deposition on Photonic Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
抗反射層、太陽能電池、蛾眼效應、奈米針、氧化鋅
solar cell, anti-reflection, moth eye principle, ZnO, nanotip
統計
Statistics
本論文已被瀏覽 5680 次,被下載 0
The thesis/dissertation has been browsed 5680 times, has been downloaded 0 times.
中文摘要
本研究將利用水溶液沉積法將氧化鋅奈米針成長於氧化鋅結核層。藉由氮氣的低溫回火提高氧化鋅奈米結構的紫外光激發並改善結晶構造,減少缺陷。氧化鋅奈米針可利用其粗化表面和光學影響的特性,在應用上可當作抗反射層。本實驗中將利用氧化鋅奈米針應用於單晶矽太陽能電池上,利用氧化鋅奈米針當抗反射層以增加光穿透率,提升太陽能電池之效率。
我們利用傅氏紅外光譜儀探討鍵結,X射線光電子能譜儀探討元素比例與表面特性,微螢光光譜量測探討吸收光譜,掃描式電子顯微鏡探討表面型態,電流-電壓曲線量測探討太陽能電池特性與光電轉換效率。實驗結果顯示,短路電流從未處理的42 mA提升至51 mA,轉換效率從未處理的15.7 %,經處理提升至18.8 %。
Abstract
In this study, we prepare the zinc oxide nanotip with aqueous solution deposited on ZnO nucleation layer. The thermal annealing with N2 ambiance at 300 oC for 1 hr increase the UV emission and decrease the defects. We use ZnO nanotip as an anti-reflection layer because of surface roughness and optical interference. ZnO nanotip with rough surface decreases reflection, so we use ZnO nanotip as an anti-reflection layer, after grown ZnO nanotip on solar cell the efficiency of solar cell was enhancement.
The coordination modes were measured by Fourier-transform infrared spectrometer (FTIR). The physical properties were characterized by X-ray diffraction (XRD). The optical properties were measured by Micro-photoluminescence (Micro-PL). The morphology was observed by field emission scanning electron microscope (FE-SEM). The performance of the cells was measured by a semiconductor device analyzer. In our results, we grow the high performance of ZnO nanotip on solar cell to increase the efficiency. The short-circuit current increased from 42 to 51 mA, and the efficiency increased from 15.7 to 18.8 %.
目次 Table of Contents
ACKNOWLEDGEMENT ii
摘 要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 1
Introduction 1
1.1 Effects of nanostructures and applications 1
1.2 Properties of ZnO one-dimensional nanostructures 2
1.3 Syntheses of ZnO nanotip 3
1.4 Advantages of Aqueous Solution Deposition (ASD) 4
1.5 Motivation 5
References 14
Chapter 2 17
Experiments 17
2.1 Substrate cleaning procedures 17
2.1.1 Plastic cleaning procedures 17
2.1.2 Silicon cleaning procedures 18
2.1.3 Glass cleaning procedures 18
2.1.4 ITO/glass substrate cleaning procedures 19
2.2 ZnO nucleation layer prepared by RF sputtering 19
2.2.1 Sputtering mechanism 19
2.2.2 RF sputtering 20
2.3 ZnO nucleation layer prepared with ZnO target by RF sputtering 21
2.4 ASD Deposition system 22
2.5 Growth process of ASD-ZnO nanotip 23
2.5.1 Upside down process: 23
2.6 Basic mechanism of ZnO nanotip 23
2.7 Characterization 24
2.7.1 Scanning electron microscopy: 24
2.7.2 X-ray diffraction : 25
2.7.3 Fourier-transform infrared spectrometer (FTIR) : 26
2.7.4 Photoluminescence : 26
2.7.5 Current-voltage (I-V) Measurement 28
References 32
Chapter 3 33
Results and Discussion 33
3.1 Conditions for the formation of wurtzite ZnO nanotip 33
3.2 Anti-reflection coating – “Moth eye” principle 34
3.3 Structure conditions for moth eye effect 35
3.4 Effective medium theories 36
3.5 Effective refractive index 37
3.6 Performance of solar cell with ZnO nanotip 40
3.7 Stepwise growth of ZnO nanotip 41
3.8 XRD spectra of ASD-ZnO nanotip 42
3.9 FTIR spectra of ASD-ZnO nanotip 42
3.10 Micro PL spectra of ASD-ZnO nanotip 43
References 60
Chapter 4 62
Conclusions 62

參考文獻 References
1.Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science (2001) 291, 1947
2.Zhong Lin Wang, Nanostructures of zinc oxide, Materials Today, 2004
3.D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, ZnO: growth ,doping and processing, materialstoday june 2004 P34~40
4.S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, vol. 50, pp. 294-340, 2005
5.Ilan Shalish, Henryk Temkin, and Venkatesh Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, PHYSICAL REVIEW B 69, 245401 (2004)
6.Zhiyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, and Evan C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, APPLIED PHYSICS LETTERS 89, 213110 2006
7.Wei Chen, Xiaoming Tao, Yuyang Liu, Xiaohong Sun, Zhigang Hu, Bin Fei, Applied Surface Science 252 (2006) 8683–8687
8.Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
9.Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
10.Xianghua Kong, Xiaoming Sun, Xiaolin Li, Yadong Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
11.Sungyeon Kim, Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
12.Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
13.Ying He, Wenbin Sang, Jun’an Wang, Ruofeng Wu, Jiahua Min, Vertically well-aligned ZnO nanowires generated with self-assembling polymers, Materials Chemistry and Physics 94 (2005) 29–33
14.Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’ol, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-drivenammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
15.S. Music, S. Popovic, M. Maljkovic, D. Dragcevic, Influence of synthesis procedure on the formation and properties of zinc oxide, Journal of Alloys and Compounds 347 (2002) 324–332
16.Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho, Dong Jun Park and Jeong Yong Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
17.X. M. Cheng and C. L. Chien, J. Appl. Phys. 93, 1015 s2003d.
18.X. T. Zhang, Y. C. Liu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan, and X. G. Kong, J. Cryst. Growth 254, 80 s2003d.
19.S. J. Chen, Y. C. Liu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, J. Phys.: Condens. Matter 15, 1975 s2003d.
20.Y. Harada and S. Hashimoto, Phys. Rev. B 68, 045421 s2003d.
21.H. Y. Xu, Y. C. Liu, J. G. Ma, Y. M. Luo, Y. M. Lu, D. Z. Shen, J. Y. Zhang, X. W. Fan, and R. Mu, J. Phys.: Condens. Matter 16, 5143 s2004d
1.H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, H. Hosono, Appl. Phys. Lett. 76 (19) (2000) 2740–2742
2.R. H. Schmitt, H. L. Glove, R. D. Brown, ”The Equivalent Conductance of the Hexafluorocomplexes of Group IV (Si, Ge, Sn, Ti, Zr, Hf) ,” Journal of the American Chemical Society, vol. 82, pp.5292-5295,1960.
3.Christian A. Wamser, “Equilibria in the System Boron Trifluoride--Water at 25°, “Journal of the American Chemical Society, vol.73, pp. 409-416,1951.
4.K. Shimizu, H. Imai, H. Hirashima, K. Tsukumab, “Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, “Thin Solid Films, vol.351, pp. 220-224, 1999.
5.Zhuo Wang, Xue-feng Qian, Jie Yin, and Zi-kangZhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
6.Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
7.Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
1.Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186~196
2.G. S. Kim, S. G. Ansari, H. K. Seo, Y. S. Kim, and H. S. Shin, Growth and morphological study of zinc oxide nanoneedles grown on the annealed titanate nanotubes using hydrothermal method, JOURNAL OF APPLIED PHYSICS 102, 084302 2007
3.P. B. Clapham and M. C. Hutley, “Reduction of Lens Reflexion by the “Moth Eye” principle,” Nature, vol. 244, pp. 281–282, 1973.
4.D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Applied Optics, vol. 32, pp. 1154–1167, 1993.
5.B. S. Thornton, “Limit of the moth's eye principle and other impedance-matching corrugations for solar-absorber design,” J. Opt. Soc. Am., vol. 65, pp. 267–270, 1975.
6.S. J. Wilsona; M. C. Hutleya, “The Optical Properties of 'Moth Eye' Antireflection Surfaces,” Journal of Modern Optics, vol. 29, pp.993–1009, 1982.
7.C. H. Sun, P. Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon,” Applied Physics Letters, vol. 92, pp. 061112, 2008.
8.W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” J. Opt. Soc. Am. A, vol. 8, pp. 549–553, 1991.
9.Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Optics Letters, vol. 24, pp. 1422–1424, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.251.22
論文開放下載的時間是 校外不公開

Your IP address is 18.226.251.22
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code