Responsive image
博碩士論文 etd-0725112-154115 詳細資訊
Title page for etd-0725112-154115
論文名稱
Title
以液相沉積法於玻璃基板上備製正型氧化鎳透明導電薄膜之特性分析
Characterization of Transparent Conducting P-type Nickel Oxide Films on Glass Substrate Prepared by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-19
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
透明導電氧化物、液相沉積法、氧化鎳、摻雜、電阻率、穿透率
liquid phase deposition, doping, Nickel oxide, transmittance, resistivity, Transparent Conducting Oxides
統計
Statistics
本論文已被瀏覽 5671 次,被下載 3
The thesis/dissertation has been browsed 5671 times, has been downloaded 3 times.
中文摘要
此研究中,我們將研究氧化鎳、氧化鎳摻雜鋰薄膜在玻璃基板上不同之特性與應用。我們將進行氧化鎳、氧化鎳摻雜鋰薄膜之物理、化學、光和電特性方面的量測與討論。物理特性方面,由場放射掃描電子顯微鏡和X 光繞射來看薄膜的厚度和結構。化學特性部分,由X 射線光電子光譜學來看薄膜的化學組成比和傅立葉轉換紅外光譜儀來看薄膜的化學鍵結。光特性部份,由薄膜量測儀來量測薄膜之穿透率,電特性部份,由四點探針量測薄膜的電阻率。為了改善薄膜特性,我們將進行氮氣、空氣和笑氣下回火處理的研究。在進行氧化鎳摻雜鋰實驗中,我們選用氯化鋰當做實驗中的摻雜溶液,以改善電特性方面。在400 oC 中通空氣回火處理下,未摻雜的氧化鎳薄膜之電阻率7.5 × 10-1 ohm-cm;摻雜後的氧化鎳薄膜之電阻率降低到7.2 × 10-3 ohm-cm。
Abstract
In this study, the characteristics of LPD-NiO, and lithium-doped LPD-NiO filmson glass substrate were investigated. In our experiment, we do some measurement about physical, chemical, electrical and optical properties for LPD-NiO and lithium-doped LPD-NiO films and discussed with them. The NiO film thickness was characterized by field emission scanning electron microscopy (FE-SEM), structure was characterized by X-ray diffraction (XRD), chemical properties were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). Electrical properties were characterized by four-point probe, and optical properties were characterized by a reflecting spectrograph. The thermal annealing was used to improve the characteristics of LPD-NiO and lithium-doped LPD-NiO films in nitrogen, air and nitrous oxide ambient. For lithium doping, the lithium chloride was used as the doping solution and the electrical characteristics were enhanced. After thermal annealing in air at 400 oC, the resistivity of NiO films is 7.5 × 10-1 ohm-cm and can be lowed to 7.2 × 10-3 ohm-cm with lithium doping.
目次 Table of Contents
ACKNOWLEDGEMENT ii
Abstract iii
摘 要 iv
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 1
Introduction 1
1-1 Properties and Applications of Metal Oxide Films 1
1-2 Review of Transparent Conducting Oxides (TCOs) 1
1-3 Properties and Applications of Nickel Oxide 4
1-4 Review of Liquid Phase Deposition (LPD) 5
1-4-1 Advantages of Liquid Phase Deposition 7
1-5 Motivation of Doping Ions into NiO Films 8
1-5-1 Doping lithium 8
Chapter 2 14
Experiments 14
2-1 Introduction of LPD System 14
2-2 Cleaning of Glass Substrate Procedures 14
2-3 Preparation Aqueous Solutions for LPD-NiO or lithium-Doped LPD-NiO Deposition 15
2-3-1 Preparation of NiF2•4H2O Solution 15
2-3-2 Preparation of Boric Acid Solution 16
2-3-3 Preparation of lithium Chloride Solution 16
2-4 LPD-NiO or lithium-Doped LPD-NiO Films Deposition Process 16
2-4-1 LPD-NiO Deposition Process 16
2-4-2 Lithium-Doped LPD-NiO Deposition Process 17
2-5 Growth Mechanisms of LPD-NiO Films 18
2-6 Characterization of LPD-NiO or lithium-Doped LPD-NiO Films 18
2-6-1 Physical and Chemical Properties of LPD-NiO or lithium-Doped LPD-NiO Films 18
2-6-1-1 Thickness, Surface and Cross-Sectional Morphologies of LPD-NiO or lithium-Doped LPD-NiO Films 18
2-6-1-2 Structure of LPD-NiO or lithium-Doped LPD-NiO Films 18
2-6-1-3 Composition of LPD-NiO or lithium-Doped LPD-NiO Films 19
2-6-1-4 Chemical bonding of LPD-NiO or lithium-Doped LPD-NiO Films 19
2-6-2 Electrical Properties of LPD-NiO or lithium-Doped LPD-NiO Films 19
2-6-3 Optical Properties of LPD-NiO or lithium-Doped LPD-NiO Films 19
Chapter 3 23
Results and Discussion 23
3-1 Characterization of LPD-NiO films 23
3-1-1 Deposition Rate and Cross section of LPD-NiO films by SEM 23
3-1-2 X-ray diffraction spectra of LPD-NiO films 23
3-1-3 ESCA analysis of LPD-NiO films 24
3-1-4 FTIR spectra of LPD-NiO films 24
3-1-5 Electrical Characterization of LPD-NiO Films 25
3-1-5-1 Electrical Characterization of LPD-NiO films annealed at 400 oC in N2 ambient 25
3-1-5-2 Electrical Characterization of LPD-NiO films annealed at 400 oC in air ambient 25
3-1-5-3 Electrical Characterization of LPD-NiO films annealed at 400 oC in N2O ambient 26
3-1-5-4 Electrical Characterization of LPD-NiO films annealed at 500 oC in N2 ambient 26
3-1-5-5 Electrical Characterization of LPD-NiO films annealed at 500 oC in air ambient 26
3-1-5-6 Electrical Characterization of LPD-NiO films annealed at 500 oC in N2O ambient 27
3-1-6 Optical Characterization of LPD-NiO films 27
3-1-6-1 Optical Characterization of LPD-NiO films annealed at 400 oC in N2 ambient 27
3-1-6-2 Optical Characterization of LPD-NiO films annealed at 400 oC in air ambient 27
3-1-6-3 Optical Characterization of LPD-NiO films annealed at 400 oC in N2O ambient 28
3-1-6-4 Optical Characterization of LPD-NiO films annealed at 500 oC in N2 ambient 28
3-1-6-5 Optical Characterization of LPD-NiO films annealed at 500 oC in air ambient 28
3-1-6-6 Optical Characterization of LPD-NiO films annealed at 500 oC in N2O ambient 28
3-2 Characterization of lithium-doped LPD-NiO films 29
3-2-1 Deposition Rate and Cross section of lithium-doped LPD-NiO films by SEM 29
3-2-2 X-ray diffraction spectra of lithium-doped LPD-NiO films 29
3-2-3 ESCA analysis of lithium-doped LPD-NiO films 30
3-2-4 FTIR spectra of lithium-doped LPD-NiO films 30
3-2-5 Electrical Characterization of lithium-doped LPD-NiO Films 31
3-2-5-1 Electrical Characterization of lithium-doped LPD-NiO films annealed at 400 oC in N2 ambient 31
3-2-5-2 Electrical Characterization of lithium-doped LPD-NiO films annealed at 400 oC in air ambient 32
3-2-5-3 Electrical Characterization of lithium-doped LPD-NiO films annealed at 400 oC in N2O ambient 32
3-2-5-4 Electrical Characterization of lithium-doped LPD-NiO films annealed at 500 oC in N2 ambient 32
3-2-5-5 Electrical Characterization of lithium-doped LPD-NiO films annealed at 500 oC in air ambient 33
3-2-5-6 Electrical Characterization of lithium-doped LPD-NiO films annealed at 500 oC in N2O ambient 33
3-2-6 Optical Characterization of lithium-doped LPD-NiO films 33
3-2-6-1 Optical Characterization of lithium-doped LPD-NiO films annealed at 400 oC in N2 ambient 33
3-2-6-2 Optical Characterization of lithium-doped LPD-NiO films annealed at 400 oC in air ambient 34
3-2-6-3 Optical Characterization of lithium-doped LPD-NiO films annealed at 400 oC in N2O ambient 34
3-2-6-4 Optical Characterization of lithium-doped LPD-NiO films annealed at 500 oC in N2 ambient 34
3-2-6-5 Optical Characterization of lithium-doped LPD-NiO films annealed at 500 oC in air ambient 35
3-2-6-6 Optical Characterization of lithium-doped LPD-NiO films annealed at 500 oC in N2O ambient 35
Chapter 4 60
Conclusions 60
Reference 61
參考文獻 References
Reference
Chapter 1
[1-1] D. S. Ginley, C. Bright, “Transparent conducting oxides”, MRS Bulletin 25(8) (2000) 15.
[1-2] K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films, 102, 1 (1983).
[1-3] Dutta Titas, ” Nanostructured Transparent Conducting Oxides for Device Applications”, North Carolina State University, (2011) 257.
[1-4]李玉華, “透明導電膜及其應用”, 科儀新知, 12卷第一期, (79), 94-102.
[1-5] J. L.Vossen, “Transparent Conducting Films”, Physics of Thin Films, 9(1977), 1-64.
[1-6] M. S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, “Low-loss ZnO Optical Waveguides for SAW-AO applications ”IEEE Trans. Ultrasonics, 36(1989), 442-445.
[1-7] A.B. Kunz, J. Phys. C 14L (1981) 445.
[1-8] D. Adler, J. Feinleib, Phys. Rev. B 2 (1970) 3112.
[1-9] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films 236 (1993) 27.
[1-10] I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, L. Spiess, “Sensing characteristics of NiO thin films as NO2 gas sensor”, Thin Solid Films, 418, pp.9-15, 2002.
[1-11]WebElementsTM, the periodic table on the WWW, URL: http://www.webelements.com/, 1993-2001 Mark Winter, The University of Sheffield and WebElements Ltd, UK.30.
[1-12] I. Hotový, D. Búc, “Characterization of NiO thin films deposited by reactive sputtering”, Vacuum 50 (1998) 41.
[1-13] E. Antolini, J. Mater. Sci., 27(1992) 3335.
[1-14] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nature 407 (2000) 496.
[1-15] X. Wang, J.M. Song, L.S. Gao, J.Y. Jin, H.G. Zheng, Z.D. Zhang,
Nanotechnology 16 (2005) 37.
[1-16] D.S. Wang, R. Xu, X. Wang, Y.D. Li, Nanotechnology 17 (2006) 979.
[1-17] J.W. Fergus, Sensor. Actuators, B-Chem. 121 (2007) 652.
[1-18] J. Bandara, H. Weerasinghe, Sol. Energy Mater. Sol. Cells 85 (2005) 385.
[1-19] T. Razpotnik, J. Macˇek, J. Eur. Ceram. Soc. 27 (2007) 1405.
[1-20] Y.G. Wang, X.G. Zhang, J. Electrochem. Soc. 152 (2005) A671.
[1-21] L. Ottaviano, A. Pennisi, F. Simone, Surf. Interface Anal. 36 (2004) 1335.
[1-22] E. Fujii, A. Tomozawa, H. Torii and R. Takayama: Jpn. J. Appl. Phys. 35 (1996) L328–L330.
[1-23] W. Estrada, A. M. Anderson, and C. G. Granqvist, J. Appl. Phys. 64, 3678 (1988).
[1-24] T. Seike and J. Nagai, Sol. Energy Mater. 22, 107 (1991).
[1-25] C. Natarajan, H. Matsumoto, and G. Nogami, J. Electrochem. Soc. 144, 121 (1997).
[1-26] S. R. Jiang, P. X. Yan, B. X. Feng, X. M. Cai, and J. Wang, Mater. Chem. Phys. 77, 384 (2002).
[1-27] T. Maruyama and S. Arai, Sol. Energy Mater. Sol. Cells 30, 257 (1993).
[1-28] X. H. Xia, J. P. Tu, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, Electrochim. Acta 53, 5721 (2008).
[1-29] T. J. Richardson and M. D. Rubin, Electrochim. Acta 46, 2119 (2001).
[1-30] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, Journal of The Electrochemical Society, 135, pp.2013-2016, 1988.
[1-31] S. Deki, Y. Aoi, “Synthesis of metal oxide thin films by liquid-phase deposition method”, Journal of Materials Research, 13, pp.883-890, 1998.
[1-32] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment”, 2003.
[1-33] Titas Dutta, P. Gupta, A. Gupta, and J. Narayan,” Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions”, JOURNAL OF APPLIED PHYSICS 108, 083715 (2010)
[1-34] P Puspharajah, S Radhakrishna and A. K Arof, “Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique”, JOURNAL OF MATERIALS SCIENCE 32 (1997) 3001-3006.
Chapter 2
[2-1] R. H. Schmitt, H. L. Glove, R. D. Brown, ”The Equivalent Conductance of the Hexafluorocomplexes of Group IV (Si, Ge, Sn, Ti, Zr, Hf) ,” Journal of the American Chemical Society, vol. 82, pp.5292-5295,1960.
[2-2] Christian A. Wamser, “Equilibria in the System Boron Trifluoride--Water at 25°, “Journal of the American Chemical Society, vol.73, pp. 409-416,1951.
[2-3] K. Shimizu, H. Imai, H. Hirashima, K. Tsukumab, “Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions, “Thin Solid Films, vol.351, pp. 220-224, 1999.
Chapter 3
[3-1] M. P. Houng, C. J. Huang, Y. H. Wang, W. J. Chang, “Extremely low temperature formation of silicon dioxide on gallium arsenide”, Journal of Applied. Physics, 82, pp.5788-5792, 1997.
[3-2] J. H. Wei, S. C. Lee, “The Structure Change of Liquid Phase Deposited Silicon Oxide by Water Dilution”, Journal of the Electrochemical Society, 144, pp.1870 (1997).
[3-3] Y.M. Lu, W.S. Hwang, J.S. Yang, H.C. Chuang, Thin Solid Films 420 –421 (2002) 54–61.
[3-4] Hao-Long Chen, Yao-Sheng Yang, “Effect of crystallographic orientations on electrical properties of sputter-deposited nickel oxide thin films”, Thin Solid Films 516 (2008) 5590–5596.
[3-5] M. A. Langell, and M. H. Nassir, J. Phys. Chem., 99, 4162 (1995).
[3-6] M. Schulze, R. Reissner, K. Bolwin, W. Kuch,Fresenius , J. Anal. Chem. 353 (1995) 661.
[3-7] S.-Y. Han, D.-H. Lee, Y.-J. Chang, S.-O. Ryu, T.-J. Lee, and C.-H. Chang, ” The Growth Mechanism of Nickel Oxide Thin Films by Room-Temperature Chemical Bath Deposition” , Journal of The Electrochemical Society, 153 (6) C382-C386 (2006).
[3-8] A. L. Ortiz, V. H. Collins-Martinez, C. A. Hernandez-Escobar, S.G. Flores-Gallardo, E.A. Zaragoza-Contreras, “Protection of NiO nanoparticles against leaching in acid medium by grafting of polyacrylic acid”, Materials Chemistry and Physics, 109 (2008)306-310.
[3-9] W. Xing, F. Li, Z. F. Yan, and G. Q. Lu, “Synthesis and electrochemical properties of mesoporous nickel oxide”, Journal of Power Sources, 134, pp.324-330 2004.
[3-10] H. Qiao, Z. Wei, H. Yang, L. Zhu, X. Yan, “Preparation and characterization of NiO nanoparticles by anodic arc plasma method”, Journal of Nanomaterials, 1 (2009), pp. 1–5.
[3-11] Xian-Ming Liu, Xiao-Gang Zhang, Shao-Yun Fu, ”Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors”, Materials Research Bulletin 41 (2006) 620–627.
[3-12] D. Buso, M. Guglielmi, A. Martucci, G. Mattei, P. Mazzoldi, C. Sada
and M. L. Post, Crystal Growth & Design, 2008, 8, 744.
[3-13] E. Minor-Perez, R. Mendoza-Serna, J. Mendez-Vivar, R.C. Pless, D. Quintana-Zavala, R. Torres-Robles, J. Porous. Mater. 13, 13 (2006).
[3-14] R. Cerc Korosˇec, P. Bukovec, B. Pihlar, A. Sˇ urca Vuk, B. Orel, G. Drazˇicˇ, ”Preparation and structural investigations of electrochromic
nanosized NiOx films made via the sol–gel route”, Solid State Ionics 165 (2003) 191– 200.
[3-15] Yanping Wang, Junwu Zhu, Xujie Yang, Lude Lu, Xin Wang, “Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate”, Thermochimica Acta 437 (2005) 106–109.
[3-16] R SATHIYAMOORTHI, P MANISANKAR, P SHAKKTHIVEL, MU SANG LEE and T VASUDEVAN, ” Synthesis, characterization and electrochemical studies of LiNi0⋅8M0⋅2O2 cathode material for rechargeable lithium batteries”, Bull. Mater. Sci., Vol. 31, No. 3, June 2008, pp. 441–447.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 54.157.56.179
論文開放下載的時間是 校外不公開

Your IP address is 54.157.56.179
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code