Responsive image
博碩士論文 etd-0725112-162619 詳細資訊
Title page for etd-0725112-162619
論文名稱
Title
以液相沉積法備製鈮摻雜氧化鈦電致變色膜之研究
Characterization of Niobium Doped Titanium Oxide Electrochromic Films Prepared by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-20
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
二氧化鈦、鈮摻雜、液相沉積法、耐久度、電致變色
niobium, durability, electrochromic, liquid phase deposition, titanium oxide
統計
Statistics
本論文已被瀏覽 5756 次,被下載 0
The thesis/dissertation has been browsed 5756 times, has been downloaded 0 times.
中文摘要
在此研究中,我們研究二氧化鈦及鈮摻雜二氧化鈦薄膜在ITO玻璃基板上不同之特性與應用。進行二氧化鈦及鈮摻雜二氧化鈦薄膜之物理、化學、光和電化學特性方面的量測與討論。物理特性方面,由場放射掃描電子顯微鏡來看薄膜的厚度並繪出生長曲線,利用X光繞射及原子力顯微鏡觀測膜的結構、粗糙度。化學特性部分,則由X射線光電子光譜學和傅立葉轉換中紅外光譜儀來看薄膜的化學組成比和化學鍵結。光特性部份,由反射式光譜儀來量測金屬氧化薄膜之穿透率,電化學特性部份,用循環伏安儀量測薄膜上色去色的耐久度測試。為了改善薄膜眾多特性,我們進行氧氣下回火處理的研究。
藉由鈮摻雜改善二氧化鈦薄膜中因缺陷而使得電致變色測試時所造成薄膜使用壽命下降的缺點;藉由上列所敘述之量測而探討主要造成電致變色退化的原因與機制。由循環伏安法測試出未摻雜之二氧化鈦薄膜電致變色耐久度為5000次,而鈮摻雜的二氧化鈦薄膜耐久度提升為10000次。上色去色穿透率差也因為摻雜鈮後的薄膜多孔特性增加從原先的61 %提升到70 %。
Abstract
Titanium oxide (TiO2) films have been actively investigated as many applications because of the mechanical and chemical durability, high refractive index and high transparency. In catalytic and electrochemical applications, it has been utilized as a stable semiconductor electrode for the conversion of solar energy into chemical or electrical energy. Uniform TiO2 films were deposited on conductive glass substrate (ITO/glass) by liquid phase deposition (LPD) with the aqueous solutions of ammonium hexafluoro-titanate and boric acid.
Niobium oxide powder and Hydrofluoric acid which add deionized water were used to be Niobium doping solution. Undoped LPD-TiO2 has hydroxyl related defects and Li+ ions will be trapped to degrade the electrochromic durability. For niobium doping, the electrochromic characteristics were enhanced. Niobium doping in TiO2 can reduce hydroxyl related defects. The electrochromic durability was enhanced from 5×103 to 1×104 times. The transparency ratio was enhanced from 61 % to 70 % at the wavelength of 550 nm.
In our experiment, TiO2 films morphology and thickness was characterized by scanning electron microscopy (SEM), structure was characterized by X-ray diffraction (XRD) and surface roughness was measured by atomic force microscopy (AFM), chemical properties was characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR), optical properties was characterized by spectrophotometer (MP-100), and electrochromic characterized by cyclic voltammetry (CHI627C).
目次 Table of Contents
ACKNOWLEDGEMENT ii
摘 要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLE x
Chapter 1 1
Introduction 1
1-1 Developing Background of Electrochromism 1
1-2 Material of Electrochromic Films 2
1-3 Properties of Titanium Dioxide 3
1-4 Advantages of Liquid Phase Deposition 5
1-5 Motivation of Niobium doping in TiO2 6
Chapter 2 11
Experiments 11
2-1 LPD Deposition System 11
2-2 Preparation of ITO/glass Substrate 11
2-2.1 Cleaning Procedures of ITO/Glass 11
2-2.2 Polyimide Tape for Counter Electrode Cover 12
2-3 Preparation of Deposition Solution 12
2-3.1 Preparation of (NH4)2TiF6 Solution 12
2-3.2 Preparation of Boric Acid Solution 12
2-3.3 Preparation of Niobium Doping Solution 12
2-4 TiO2 Film Deposition 13
2-4.1 Undoped LPD-TiO2 Process 13
2-4.2 Nb-doped LPD-TiO2 Process 13
2-5 Mechanisms of LPD-TiO2 13
2-6 Characteristics 14
2-6.1 Physical Property 14
2-6.2 Chemical Property 15
2-6.3 Optical Property 15
2-6.4 Electrochromic Property 16
Chapter 3 22
Results and discussion 22
3-1 Electrochromic Reaction 22
3-2 Undped and Nb-doped LPD-TiO2 Films Deposited at 30 oC on ITO/glass Substrate 23
3-2.1 Deposition Rate and SEM Views of Undoped LPD-TiO2 Film 23
3-2.2 Deposition Rate and SEM Views of Nb-doped LPD-TiO2 Film 23
3-3 Atomic force microscopy (AFM) of Undoped and Nb-doped LPD-TiO2 Films 24
3-4 X-ray Diffraction Spectra of Undoped and Nb-doped LPD-TiO2 Films by Thermal Treatment 24
3-5 FTIR Spectra of Undoped and Nb-doped LPD-TiO2 Films 25
3-5.1 FTIR Spectra of Undoped LPD-TiO2 Film 25
3-5.2 FTIR Spectra of Nb-doped LPD-TiO2 Film 26
3-6 ESCA Analysis of Undoped and Nb-doped LPD-TiO2 Films 27
3-6.1 ESCA of LPD-TiO2 Film before Electrochromic Tests 27
3-6.2 ESCA of LPD-TiO2 Film after Electrochromic Tests 27
3-7 Optical Property of Undoped and Nb-doped LPD-TiO2 Films 28
3-7.1 Transparency Ratio of Undoped LPD-TiO2 Film 29
3-7.2 Transparency Ratio of Nb-doped LPD-TiO2 Film 29
3-8 Electrochemical Property of Undoped and Nb-doped LPD-TiO2 Films 30
3-8.1 Electrochemical Property of the Undoped LPD-TiO2 Film 30
3-8.2 Electrochemical Property of the Nb-doped LPD-TiO2 Film 31
3-9 Durability degradation of LPD-TiO2 Electrochromic Film 31
Chapter 4 60
Conclusions 60
References 61
參考文獻 References
Chapter 1 Introduction
[1-1] J.S.E.M. Svensson, C.G. Granqvist, “Electrochromic tungsten oxide films for energy efficient windows”, Solar Energy Materials, 11, pp. 29, 1984.
[1-2] J.S.E.M. Svensson, C.G. Granqvist, “Electrochromic coatings for “smart windows” ”, Solar Energy Materials, 12, pp.391, 1985.
[1-3] C.G. Granqvist, “Solar Energy Materials”, Advanced Materials, 15, pp. 1789, 2003.
[1-4] C. G. Granqvist, “Handbook of Inorganic Electrochromic Materials”, 1995.
[1-5] Honda, K.; Fujishima, A. Nature, 238, 37, 1972.
[1-6] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase and brookite”, Physical Review B, 51, pp. 13023-13032, 1995.
[1-7] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties”, Applied Physics A, 73, pp. 595-600, 2001.
[1-8] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces -
principles, mechanisms, and selected results”, Chemical Reviews, 95, pp. 735-758, 1995.
[1-9] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films”, Journal of Applied Physics, 75, pp. 2042-2047, 1994.
[1-10] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide”, Physical Review B, 15, pp. 3229-3235, 1977.
[1-11] G. S. Brady, and H. R. Clauser, Materials Handbook, 13th ed. New York: McGraw-Hill, 1991.
[1-12] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” Journal of Electroanalytical Chemistry, 428, pp. 25-32, 1997.
[1-13] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, 424, pp.224-228, 2003.
[1-14] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, Fig. 4258, 1998.
[1-15] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate”, Solid State Ionics, 32, pp. 461-465, 1989.
[1-16] R. D. Shannon, and J. A. Pask, Journal of the American Ceramic Society, 48, pp. 391, 1965.
[1-17] Hagfeldt, A.; Vlachopoulos, N.; Gra‥tzel, M., Journal of the Electrochemical Society, 141, L82, 1994.
[1-18] Kavan, L.; Kratochilova′, K.; Gra‥tzel, M., Journal of Electroanalytical Chemistry, 394, pp. 93, 1995.
[1-19] A. Verma, M. Kar, S.A. Agnihotry, “Aging effect of diethanolamine stabilized sol on different properties of TiO2 films: Electrochromic applications”, Solar Energy Materials & Solar Cells, 91, pp.1305–1312, 2007.
[1-20] E. Inoue, H. Kokado and A. Izawa: Oyo Buturi 43, 54, 1974. [in Japanese]
[1-21] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides”, Thin Solid Films, 323, pp. 59-62, 1998.
[1-22] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling”, Journal of Raman Spectroscopy, 27, pp. 897-900, 1996.
[1-23] O. Harizanov and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coating”, Solar Energy Materials & Solar Cells, 63, pp. 185-195, 2000.
[1-24] R. A. Zoppi, B. C. Trasferetti and C. U. Davanzo. “Sol-Gel titanium dioxide thin films on platinum substrates: preparation and characteristization”, Journal of Electroanalytical Chemistry, 544, pp. 47-57, 2003.
[1-25] G. Sanvicentr, A. Morales and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon”, Thin Solid Films, 391, pp. 133-137, 2001.
[1-26] S. G. Springer, P. E. Schmid, R. Sanjines and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering”, Surface and Coatings Technology, 151, pp. 51-54, 2002.
[1-27] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputterd on unheated substrate”, Surface and Coatings Technology, 153, pp. 93-99, 2002.
[1-28] S. S. Huang and J. S. Chen, “Comparison of the Characteristics of TiO2 Films Prepared by Low-Pressure and Plasma-Enhanced Chemical-Vapor-Deposition”, Journal of Materials Science: Materials in Electronics, 13, pp. 77-81, 2002.
[1-29] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita and H. “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition”, Thin Solid Films, 401, pp. 88-93, 2001.
[1-30] D. G. Syarif, A. Miyashita, T. Tamaki, T. Sumita, Y. Choi and H. Itoh, “Prepartion of Anatase and Rutile Thin Films by Controlling Oxygen Partial-Prsssure”, Applied Surface Science, 187, pp. 297-304, 2002.
[1-31] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-Type TiO2 Thin Films Produced by Lattice Deformation”, Japanese Journal of Applied Physics, Part 1, 36, pp. 7358-7359, 1997.
[1-32] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa and M. Persin, “ Raman-Spectroscopy of thermally annealed TiO2 thin films”, Thin Solid Films, 198, pp. 199-205, 1991.
[1-33] M. K. Lee, J. J. Huang, C. M. Shih and C. C. Cheng,” Properties of TiO2 Thin Films on Inp Substrate Prepared by Liquid-Phase Deposition”, Japanese Journal of Applied Physics, Part 1, 41, pp. 4689-4690, 2002.
[1-34] M. K. Lee and B. H. Lei, “Characterization of Titanium Oxide Films Prepared by Liquid-Phase Deposition Using Hexafluorotitanic Acid”, Japanese Journal of Applied Physics, Part 2, 39, pp. L101-L103, 2000.
[1-35] X. P. Wang, Y. Yu, X. F. Hu and L. Gao, “Hydrophilicity of TiO2 Films Prepared by Liquid Phase Deposition”, Thin Solid Films, 371, pp. 148-152, 2000.
[1-36] H. Nagayama, H. Honda, and H. Kawahara, “A New Process for Silica Coating”, Journal of The Electrochemical Society, 135, pp.2013-2016, 1988.
[1-37] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment”, 2003.
[1-38] J. Y. Sung, W. L. Ju, and Y. E. Sung, “Improved electrochromic devices with an inorganic solid electrolyte protective layer”, Solar Energy Materials & Solar Cells, 90, pp. 477–484, 2006.
[1-39] S. Hashimoto, H. Matsuoka, “Lifetime of electrochromism of amorphous WO3-TiO2 thin films”, Journal of the Electrochemical Society, 138, pp. 2403-2408, 1991.
[1-40] P. Haibo, C. Naisheng, S. Shuifa and H. Jingling, “Preparation and Characteristics of Nb5+, Ta5+/TiO2 Nanoscale Powders by Sol–Gel Process Using TiCl3”, Journal of Sol-Gel Science and Technology, 34, pp. 63–69, 2005.
Chapter 2 Experiments
[2-1] R. H. Schmitt, H. L. Glove, R. D. Brown, ”The Equivalent Conductance of the Hexafluorocomplexes of Group IV (Si, Ge, Sn, Ti, Zr, Hf)”, Journal of the American Chemical Society, 82, pp.5292-5295, 1960.
[2-2] Christian A. Wamser, “Equilibria in the System Boron Trifluoride--Water at 25°”, Journal of the American Chemical Society, 73, pp. 409-416, 1951.
[2-3] K. Shimizu, H. Imai, H. Hirashima, K. Tsukumab, “Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions”, Thin Solid Films, 351, pp. 220-224, 1999.
Chapter 3 Results and Discussion
[3-1] Z. Tebby, O. Babot, T. Toupance, D.-H Park, G. Campet, and M.-H Delville, “Low-Temperature UV-Processing of Nanocrystalline Nanoporous Thin TiO2 Films: An Original Route toward Plastic Electrochromic Systems”, Chemistry Materials, 20, pp. 7260–7267, 2008.
[3-2] Y.G Wu, G.M. Wu, X.Y. Ni, X. Wu, 63, pp. 217-226, 2000.
[3-3] D. Mardare, E. Apostol, “TiO2 thin films doped by Ce, Nb, Fe, deposited onto ITO/glass substrates”, Journal of Optoelectronics and Advanced Materials, 8, pp. 914 – 916, 2006.
[3-4] Amita Verma, S.B. Samanta, A.K. Bakhshi, and S.A. Agnihotry, “Effect of stabilizer on structural, optical and electrochemical properties of sol-gel derived spin coated TiO2 films”, Solar Energy Materials & Solar Cells, 88, pp. 47–64, 2005.
[3-5] Jia-Guo Yu, Huo-Gen Yu, Bei Cheng, Xiu-Jian Zhao, Jimmy C. Yu, and Wing-Kei Ho, “The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition”, Journal of Physical Chemistry B, 107, pp. 13871-13879, 2003.
[3-6] Amita Verma, S.B. Samanta, A.K. Bakhshi, and S.A. Agnihotry, “Effect of stabilizer on structural,optical and electrochemical properties of sol-gel derived spin coated TiO2 films”, Solar Energy Materials & Solar Cells, 88, pp. 47–64, 2005.
[3-7] Tz. Venkov, K. Fajerwerg, L. Delannoy, Hr. Klimev, K. Hadjiivanov , C. Louis, “Effect of the activation temperature on the state of gold supported on titania: An FT-IR spectroscopic study”, Applied Catalysis A: General, 301, pp.106–114, 2006.
[3-8] Dimitar A. Panayotov 1, John T. Yates Jr., “Depletion of conduction band electrons in TiO2 by water chemisorption – IR spectroscopic studies of the independence of Ti–OH frequencies on electron concentration”, Chemical Physics Letters, 410, pp. 11–17, 2005.
[3-9] Jin Joo, Soon Gu Kwon, Taekyung Yu, Min Cho, Jinwoo Lee, Jeyong Yoon, and Taeghwan Hyeon, “Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli”, Journal of Physical Chemistry B, 109, pp. 15297-15302, 2005.
[3-10] Yude Wang, Bernd M. Smarsly, and Igor Djerdj, “Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion”, Chemistry Materials, 22, pp. 6624–6631, 2010.
[3-11] M. Paulis, M. Martín, D.B. Soria, A. Díaz, J.A. Odriozola, M. Montes, “Preparation and characterization of niobium oxide for the catalytic aldol condensation of acetone”, Applied Catalysis A: General, 180, pp. 411-420, 1999.
[3-12] Dominique C. M. Dutoit, Michael Schneider, Patrizia Fabrizioli and Alfons Baiker, “Vanadia–silica mixed oxides. Influence of vanadia precursor, drying method and calcination temperature on structural and chemical properties”, Journal of Materials Chemistry, 7, pp. 271–278, 1997.
[3-13] Silverstein, R.M.; Bassler, G.C.; and Morrill, T.C. Spectrometric Identification of Organic Compounds. 4th ed, New York: John Wiley and Sons, 1981.
[3-14] M. K. Lee, C. H. Fan, H. C. Wang, and C. Y. Chang, “Fluorine Passivation of Titanium Oxide Films on ITO/Glass Grown by Liquid Phase Deposition for Electrochroism”, Journal of The Electrochemical Society, 158, pp. D511-D514, 2011.
[3-15] R. Sanjines, H. Tang, H. Berger, F. Gozzo, G. Margaritondo, “Electronic structure of anatase TiO2 oxide”, Journal of Applied Physics, 75, pp. 2945–2951, 1994.
[3-16] J.F. Moulder, W.F. Stickle, P.E. Sool, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, Eden Prairie, 1992.
[3-17] S. Södergren, H. Siegbahn, H. Rensmo, H. Lindstro1m, A. Hagfeldt, and S.-E Lindquist, “Lithium Intercalation in Nanoporous Anatase TiO2 Studied with XPS”, Journal of Physical Chemistry B, 101, PP. 3087-3090, 1997.
[3-18] Q. Zhong, J.R. Dahn, and K. Colbow, “Lithium intercalation into WO3 and the phase diagram of LixWO3”, Physical Review B, 46, pp. 2554, 1992.
[3-19] T. J. Richardson, M. D. Rubin, “Liquid phase deposition of electrochromic thin film” Electrochimica Acta, 46, pp.2119-2123, 2001.
[3-20] D. D. Cronemeyer, “Infrared Absorption of Reduced Rutile TiO Single Crystals”, Physical Review, 113, 1222, 1959.
[3-21] S. X. Zhang, D. C. Kundaliya, W. Yu, S. Dhar, S. Y. Young, L. G. Salamanca-Riba, S. B. Ogale, R. D. Vispute, and T. Venkatesan, “Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase”, Journal of Applied Physics, 102, pp. 013701–4, 2007.
[3-22] Ronald A. J. Litjens, Terence I. Quickenden, and Colin G. Freeman, “Visible and near-ultraviolet absorption spectrum of liquid water”, Applied Optics, 38, pp. 1216-1223, 1999.
[3-23] Robert Hahn, Andrei Ghicov, Hiroaki Tsuchiya, Jan M. Macak, Andres G. Muñoz, and Patrik Schmuki, “Lithium-ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast”, Physica Status Solidi (a), 204, 1281–1285, 2007.
[3-24] Gunnar A. Niklasson*, Lars Berggren, Anna-Lena Larsson, “Electrochromic tungsten oxide: the role of defects”, Solar Energy Materials & Solar Cells, 84, pp. 315–328, 2004.
[3-25] Q. Zhong, J.R. Dahn, K. Colbow, “Lithium intercalation into WO3 and the phase diagram of LixWO3”, Physical Review B, 46, pp. 2554, 1992.
[3-26] Marnix Wagemaker, Roel van de Krol, Arno P. M. Kentgens, Ad A. van Well, and Fokko M. Mulder, “Two Phase Morphology Limits Lithium Diffusion in TiO2 (Anatase): A Li MAS NMR Study”, Journal of the American Chemical Society, 123, pp. 11454-11461, 2001.
[3-27] Hugo A. Mosqueda, Carmen Vazquez, Pedro Bosch, and Heriberto Pfeiffer, “Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O)”, Chemistry of Materials, 18, pp. 2307-2310, 2006.
[3-28] Anna S. Andersson, Beata Kalska, Lennart Häggström, John O. Thomas, “Lithium extraction / insertion in LiFePO : an X-ray diffraction and Mössbauer spectroscopy study”, Solid State Ionics, 130, pp. 41–52, 2000.
[3-29] Lorena Martı′nez-dlCruz and Heriberto Pfeiffer, “Toward Understanding the Effect of Water Sorption on Lithium Zirconate (Li2ZrO3) during Its Carbonation Process at Low Temperatures”, , J. Phys. Chem. C, 114, pp. 9453–9458, 2010.
[3-30] Yongsheng Hu, Weihe Kong, Hong Li, Xuejie Huang, Liquan Chen, “Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries”, Electrochemistry Communications, 6, pp. 126–131, 2004.
[3-31] E.C.C. Souza, J.F.Q. Rey, E.N.S. Muccillo, “Synthesis and characterization of spherical and narrow size distribution indium oxide nanoparticles”, Applied Surface Science, 255, pp. 3779-3783, 2009.
[3-32] B. Orel, U. L-Stanger, Z. C-Orel, P. Bukovec, M. Kosec, Structural and FTIR spectroscopic studies of gel-xerogel-oxide transitions of SnO2 and SnO2:Sb powders and dip-coated films prepared via inorganic sol-gel route.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.220.81.106
論文開放下載的時間是 校外不公開

Your IP address is 18.220.81.106
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code