Responsive image
博碩士論文 etd-0725112-182701 詳細資訊
Title page for etd-0725112-182701
論文名稱
Title
SOI漸變式非對稱波導定向耦合極化分光器
Silicon-on-Insulator Polarization Beam Splitter Based on a Taper Asymmetrical Directional Coupler
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-10
繳交日期
Date of Submission
2012-07-25
關鍵字
Keywords
定向耦合器、積體光學、平面光波導、極化分光器、silicon on insulator (SOI)、漸變式波導
planar lightwave circuit (PLC), silicon on insulator (SOI), directional coupler, tapered waveguide, polarization beam splitter (PBS), integrated optics
統計
Statistics
本論文已被瀏覽 5742 次,被下載 1253
The thesis/dissertation has been browsed 5742 times, has been downloaded 1253 times.
中文摘要
在積體光路的設計與運作中,極化的特性限制了整個光學系統的運作,一個常用的解決方法,就是藉由極化分集系統來固定系統內的極化模態。其中極化分光器是構成極化分集系統中的一個重要的元件。本論文以 SOI 結構為基礎,設計極化分光器,並以縮小元件尺寸與增加元件操作頻寬為研究方向,以促進高密度積體光路的發展。
為了分析所設計的極化分光器,本論文使用三維有限差分時域法進行數值模擬分析,並整合非對稱型定向耦合器及漸變式波導結構形成極化分光器。首先,對於非對稱型定向耦合器,我們利用兩條非對稱直波導,將其設計成只有TE極化態可以耦合,藉由適當調整兩條波導的長度,使其所包含的能量相等,再加入漸變式的波導結構,成功的完成極化分光器的設計。為了改進極化分光器的長度與頻寬,我們對於低波導的後半段,選擇與高波導產生一個位移,分別考慮初始間距為 0.1
Abstract
Polarization dependences of optical devices in highly-integrated optical systems become a major problem. To overcome this issue, one can implement polarization diversity scheme to achieve a single polarization on-chip network. One of the essential components in a polarization diversity scheme is the polarization beam splitter (PBS). In this thesis, we will a PBS based on a silicon-on-insulator (SOI) platform with reduced device size and broad operation bandwidth.
We use the three-dimensional Finite-Difference Time-Domain (3D-FDTD) method to perform the simulation. First, we use two asymmetric waveguides to design an asymmetric directional coupler with only TE-like mode phase matching condition. We then tape the lower waveguide to keep the TE-polarized light, and split the TE- and TM- polarized light. By utilizing an asymmetrical directional coupler with a tapered waveguide, we have achieved a 7.3
目次 Table of Contents
摘要i
英文摘要ii
目錄iii
圖目錄iv
表目錄viii
第一章 簡介1
1.1 絕緣層上鍍矽 2
1.2 極化分集系統 3
1.2.1 極化分光器 4
1.2.2 極化旋轉器 6
1.3 研究動機 8
第二章 數值模擬與分析方法11
2.1 波束傳播法11
2.2 有限差分時域法16
第三章 SOI 基本波導模擬與分析21
3.1 模態耦合理論 21
3.2 基本波導特性 27
第四章 極化分光器元件設計及分析36
4.1 非對稱型定向耦合器36
4.2 極化分光器41
第五章 結論與未來展望59
參考文獻60
參考文獻 References
[1] S. E. Miller, “Integrated optics: an introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2068, 1969.
[2] Y. Sun, X. Jiang, J. Yang, Y. Tang, and M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett., vol. 20, pp. 2182-2184, 2003.
[3] J Xia, J Yu, Z Wang, Z Fan, and S. Chen, “Low power 2 × 2 thermo-optic SOI waveguide switch fabricated by anisotropic chemical etching,” Opt. Commun., vol. 232, pp. 223-228, 2004.
[4] A. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photon. Technol. Lett., vol. 21, pp. 651-653, 2009.
[5] Y. Jiao, D. Dai, Y. Shi, and S. He, “Shortened polarization beam splitters with two cascaded multimode interference sections,” IEEE Photon. Technol. Lett., vol. 21, pp. 1538-1540, 2009.
[6] B. M. A. Rahman, N. Somasiri, C. Themistos, and K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys., vol. 73, pp. 613-618, 2001.
[7] J. Hong, H. Ryu, S. Park, J. Jeong, S. Lee, E. Lee, S. Park, D. Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett., vol. 15, pp. 72-74, 2003.
[8] A. Katigbak, J. Strother, and J. Lin, “Compact silicon slot waveguide polarization splitter,” Opt. Eng., vol. 48, pp. 080503-080505, 2009.
[9] B. K. Yang, S. Y. Shin, and D. M. Zhang, “Ultrashort polarization splitter using two-mode interference in silicon photonic wires,” IEEE Photon. Technol. Lett., vol. 21, pp. 432-434, 2009.
[10] T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides,” IEEE Photon. Technol. Lett., vol. 17, pp. 393-395, 2005.
[11] L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP/InP,” IEEE Photon. Technol. Lett., vol. 6, pp. 402-405, 1994.
[12] L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP–InP,” IEEE Photon. Technol. Lett., vol. 19, pp. 1286-1288, 2007.
[13] L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug R. W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y.-S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol., vol. 25, pp. 740-746, 2007.
[14] T. Yamazaki, H. Aono, J. Yamauchi, and H. Nakano, “Coupled waveguide polarization splitter with slightly different core widths,” J. Lightwave Technol., vol. 26, pp. 3528-3533, 2008.
[15] J. Xiao, X. Liu, and X. Sun, “Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures,” Jpn. J. Appl. Phys., vol. 47, pp. 3748-3754, 2008.
[16] I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photon. Technol. Lett., vol. 17, pp. 100-102, 2005.
[17] Y. Yue, L. Zhang, J.-Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett., vol. 35, pp. 1364-1366, 2010.
[18] X. G. Tu, S. S. N. Ang, A. B. Chew, J. H. Teng, and T. Mei, “An ultracompact directional coupler based on GaAs cross-slot waveguide,” IEEE Photon. Technol. Lett., vol. 22, pp. 1324-1326, 2010.
[19] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express, vol. 14, pp. 12401-12408, 2006.
[20] M. Komatsu, K. Saitoh and M. Koshiba, “Design of miniaturized silicon wire and slot waveguide polarization splitter
based on a resonant tunneling,” Opt. Express, vol. 17, pp. 19225-19233, 2009.
[21] D. Dai and J. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express, vol. 19, pp. 18614-18620, 2011.
[22] D. Dai, Z. Wang, and J. Bowers, “Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler,” Opt. Lett., vol. 36, pp. 2590-2592, 2011.
[23] Y. Shi, D. Dai, and S. He, “Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler,” IEEE Photon. Technol. Lett., vol. 19, pp. 825-827, 2007.
[24] X. Ao, L. Liu, W. Lech, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett., vol. 89, pp. 171115-171117, 2006.
[25] J. Feng and Z. Zhou, “Polarization beam splitter using a binary blazed grating coupler,” Opt. Lett., vol. 32, pp. 1662-1664, 2007.
[26] V. P. Tzolov and M. Fontaine, “A passive polarization converter free of longitudinally-periodic structure,” Opt. Commun., vol. 127, pp. 7-13, 1996.
[27] J. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon-waveguide-based mode evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron., vol. 16, pp. 53-60, 2010.
[28] C. F. Kane, and R. R. Krchnavek, “Benzocyclobutene optical waveguides,” IEEE Photon. Technol. Lett., vol.7, pp. 535-537, 1995.
[29] R. Guider, “Novel materials and optical waveguide systems for silicon photonics,” M. S. Thesis, Department of Physics, University of Trento, Italy, 2009.
[30] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, pp. 1971-1974, 1986.
[31] T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nature Photonics, vol. 1, pp. 57-60, 2007.
[32] D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Appl. Opt., vol. 45, pp. 4941-4946, 2006.
[33] V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett., vol. 29, pp. 1209-1211, 2004.
[34] Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett., vol. 29, pp. 1626-1628, 2004.
[35] P. A. Anderson, B. S. Schmidt, and M. Lipson, “High confinement in silicon slot waveguides with sharp bends,” Opt. Express, vol. 14, pp. 9197-9202, 2006.
[36] N. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett., vol. 32, pp. 1250-1252, 2007.
[37] W. P. Huang, and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE J. Quantum Electron, vol. 29, pp. 2639-2649, 1993.
[38] A. Tavlove, “The finite-difference time-domain method,” Computational Electrodynamics, 1995.
[39] K. S. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302-307, 1966.
[40] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185-200, 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code