Responsive image
博碩士論文 etd-0725114-135906 詳細資訊
Title page for etd-0725114-135906
論文名稱
Title
選殖的甘藷第二群半胱胺酸蛋白酶抑制劑差異性調節ethephon及NaCl誘導的葉片老化
A cloned group II phytocystatin SPCPI differentially modulates ethephon and NaCl-induced leaf senescence in sweet potato (Ipomoea batatas (L.) Lam.)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-20
繳交日期
Date of Submission
2014-08-25
關鍵字
Keywords
半胱胺酸蛋白酶抑制劑、益收生長素、鹽、葉片老化、甘藷
Cysteine protease inhibitor, NaCl, Ethephon, Leaf senescence, sweet potato
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
植物半胱胺酸蛋白酶抑制劑 ( phytocystatin ) 其作用為抑制半胱胺酸蛋白酶 ( cysteine proteases ) 的活性,主要分為三大群: 第一群 ( 約12-16 kDa )、第二群 ( 約23 kDa ) 及第三群( 約80 kDa ),於植物生長發育過程或對抗環境逆境方面扮演不同的生理功能及角色。本研究利用扣減雜交 ( subtractive hybridization ) 及RACE PCR從甘藷的老化葉片選殖到一段全長cDNA,命名為 SPCPI,其開放閱讀框架 ( open reading frame; ORF ) 含有765個核苷酸 ( 254個胺基酸 ),與第二群植物半胱胺酸蛋白酶抑制劑胺的基酸序列包括千穗谷、甘藍、番茄、矮牽牛、芝麻、馬鈴薯等具有高相似性 ( 約57至69% ),基因及蛋白質結構分析顯示其含有植物半胱胺酸蛋白酶抑制劑特有的保守胺基酸序列 ”LARFAVEEHNK”,可能參與抑制papain-like ( GG、QVVAG、PW )及抑制legumain-like ( SNSL ) 半胱胺酸蛋白酶的活性位點。甘藷半胱胺酸蛋白酶抑制劑SPCPI於發芽塊根、L3成熟及L4老化中期葉片中皆有顯著表現,且受ethephon及NaCl處理誘導。Ethephon 及NaCl處理顯著促進葉片老化、H2O2以及MDA含量增加,外加甘藷半胱胺酸蛋白酶抑制劑SPCPI融合蛋白質可延緩ethephon誘導的葉片老化,然而卻加速NaCl處理誘導的葉片老化。前處理包括95℃加熱5分鐘或室溫下先混合anti-SPCPI多株抗體兩小時,可以顯著抑制外加的甘藷半胱胺酸蛋白酶抑制劑SPCPI融合蛋白質的作用,回復至原來ethephon或NaCl處理誘導的葉片老化、H2O2以及MDA含量增加的程度。另外單獨外加甘藷半胱胺酸蛋白酶抑制劑SPCPI融合蛋白質並無顯著加速黑暗處理甘藷葉片老化、H2O2以及MDA含量增加的速率。根據上述實驗結果結論甘藷第二群半胱胺酸蛋白酶抑制劑SPCPI為ethephon 及NaCl可誘導的基因,其生理功能可能與調整ethephon 及NaCl誘導的甘藷葉片老化、H2O2以及MDA含量增加有關,且需要ethephon 及NaCl可誘導的交互作用因子一起協同作用。
Abstract
Plant phytocystatins are cysteine protease inhibitors and generally classified into three groups: group I ( ca. 12-16 kDa ), group 2 ( ca. 23 kDa ) and group 3 ( ca. 80 kDa ). Phytocystatins play diverse physiological roles and function in cope with plant developmental cues and environmental stress responses. In this research, a full-length cDNA, SPCPI, has been cloned from sweet potato senescent leaves with PCR-based subtractive hybridization and RACE PCR. Sweet potato SPCPI contains 765 nucleotides ( 254 amino acids ) in its open reading frame ( ORF ), and exhibits high amino acid sequence identities ( ca. 57% to 69% ) with different plant phytocystatins, including Amaranthus hypochondriacus, Brassica oleraceae, Solanum lycopersicum, Petunia hybrid, Sesamum indicum, and Solanum tuberosum. Gene and protein structural analysis showed that the SPCPI-encoded protein contains the unique conserved amino acid sequence motif “LARFAVEEHNK” of phytocystatin, potentially involved in inhibiting active sites of papain-like ( GG, QVVAG, PW ) and legumain-like ( SNSL ) cysteine proteases. Gene expression patterns showed that phytocystatin SPCPI was significantly enhanced in sprouting storage roots, L3 mature and L4 early senescent leaves, and highly inducible by ethephon, an ethylene-releasing compound, and NaCl. Ethephon and NaCl treatment significantly promoted leaf senescence, H2O2 and MDA elevation. Exogenous purified phytocystatin SPCPI fusion protein significantly mitigated ethephon-mediated leaf senescence, however, remarkably accelerated NaCl-induced leaf senescence. The SPCPI fusion protein-mediated effects could be remarkably antagonized by pre-treatment with anti-SPCPI antibody at room temperature for 2 h or by boiling at 95℃ for 5 min before its application, and reversed them to similar levels of leaf senescence, H2O2 and MDA elevation caused by ethephon or NaCl alone. In addition, exogenous phytocystatin SPCPI fusion protein alone did not significantly alter dark-induced leaf senescence, H2O2 and MDA elevation. These results conclude that sweet potato group II phytocystatin SPCPI is an ethephon and NaCl-inducible gene, and likely participates in the modulation of ethephon and NaCl-mediated leaf senescence, H2O2 and MDA elevation, which require ethephon or NaCl-inducible interacting components for effective interactions.
目次 Table of Contents
目 錄
論文審定書…………………….………………………………………………………….......i
誌謝…………………….…………………………………………………………................ii
中文摘要…………………….………………………………………………………….........iii
英文摘要…………….………………………………………………………………............iv
目錄…………………………………………………………………….…………………...…v
圖次................................................................................................................viii
壹、緒論……………………………………………………………………………............1
甘藷……………….……………………………………………………………………….1
葉片老化的生理過程及機轉……………..…………………………………................1
影響葉片老化的因子…..……………………………………………..........................2
乙烯與葉片老化……………………………..………………………..........................3
鹽分逆境與葉片老化………………………………………………….........................4
老化相關基因半胱胺酸蛋白酶 ( cysteine protease ) ………................................5
植物半胱胺酸蛋白酶抑制劑 ( phytocystatin ) 的蛋白質結構分析……….…...........6
植物半胱胺酸蛋白酶抑制劑 ( phytocystatin ) 在生長發育過程或環境逆境
下扮演的功能及角色......................................................................................8
研究動機與目的...........................................................................................11
貳、實驗材料..................................................................................................12
甘藷...........................................................................................................12
分析基因表現的引子....................................................................................12
參、實驗方法..................................................................................................13
甘藷半胱胺酸蛋白酶抑制劑 ( cysteine protease inhibitor ) SPCPI之基因選殖
及定性分析.................................................................................................13
甘藷半胱胺酸蛋白酶抑制劑SPCPI基因選殖及生物資訊學分析..........................13
甘藷半胱胺酸蛋白酶抑制劑SPCPI生長發育表現分析.......................................13
甘藷半胱胺酸蛋白酶抑制劑SPCPI組織專一性表現分析....................................13
甘藷半胱胺酸蛋白酶抑制劑SPCPI塊根不同發育時期表現分析..........................14
SPCPI重組表現載體構築與誘導融合蛋白質表現、純化及抗體製備...................14
甘藷成熟葉片處理.......................................................................................15
不同濃度ethephon處理甘藷成熟葉片.............................................................15
不同濃度NaCl處理甘藷成熟葉片....................................................................15
甘藷半胱胺酸蛋白酶抑制劑SPCPI 融合蛋白質處理甘藷成熟葉片......................16
外加SPCPI 融合蛋白質處理甘藷成熟葉片......................................................16
外加不同劑量SPCPI 融合蛋白質及ethephon處理甘藷成熟葉片.........................16
外加SPCPI融合蛋白、anti-SPCPI抗體及Ethephon處理甘藷成熟葉片…….……..17
外加失活之SPCPI 融合蛋白質及ethephon處理甘藷成熟葉片……….…………….17
外加不同劑量SPCPI 融合蛋白質及NaCl處理甘藷成熟葉片...............................17
外加SPCPI融合蛋白、anti-SPCPI抗體及NaCl處理甘藷成熟葉片…………....…..18
外加失活之SPCPI 融合蛋白質及NaCl處理甘藷成熟葉片……….………………....18
扣減雜交法……………………………………………………………………………...19
Rapid amplification of cDNA ends……...........................................................27
融合蛋白質SPCPI的純化..............................................................................30
葉綠素含量測量...........................................................................................31
光合作用效率測量 ( Fv/Fm ) .........................................................................31
DAB 染色分析.............................................................................................32
H2O2 含量分析...........................................................................................32
MDA含量分析..............................................................................................32
SPCPI基因表現的分析 ( RT-PCR& Western blot ) ..........................................33
Total RNA 抽取............................................................................................33
RT-PCR......................................................................................................34
PCR...........................................................................................................35
Western blot...............................................................................................37
肆、結果.........................................................................................................40
甘藷半胱胺酸蛋白酶抑制劑SPCPI的生物資訊學分析.......................................40
甘藷半胱胺酸蛋白酶抑制劑SPCPI在不同葉片生長發育階段及組織專一性
的表現........................................................................................................40
甘藷半胱胺酸蛋白酶抑制劑SPCPI在不同塊根發芽週數的表現..........................41
甘藷半胱胺酸蛋白酶抑制劑 SPCPI 基因表現受 ethephon 誘導.........................42
甘藷半胱胺酸蛋白酶抑制劑 SPCPI 基因表現受 NaCl 逆境誘導.........................43
甘藷半胱胺酸蛋白酶抑制劑 SPCPI 融合蛋白的誘導與純化...............................45
甘藷半胱胺酸蛋白酶抑制劑 SPCPI 融合蛋白延緩 ethephon 誘導的甘藷葉片老
化..............................................................................................................45
前處理 anti-SPCPI 抗體或熱處理 SPCPI 融合蛋白對 ethephon誘導甘藷老
片老化的影響...............................................................................................46
外加甘藷半胱胺酸蛋白酶抑制劑 SPCPI 融合蛋白促進 NaCl 誘導的甘藷葉片老
化...............................................................................................................49
前處理 anti-SPCPI 抗體或熱處理抑制 SPCPI 融合蛋白對 NaCl 誘導甘藷葉片老化
的影響........................................................................................................50
單獨外加甘藷半胱胺酸蛋白酶抑制劑 SPCPI 融合蛋白沒有顯著增加黑暗處理下甘
藷葉片老化速率...........................................................................................53
伍、討論.........................................................................................................55
陸、參考文獻..................................................................................................59
參考文獻 References
沈哲宇,(2010) 從甘藷老化葉片分子選殖 mitogen-activated protein kinase cDNA 及乙烯訊息傳導探討。國立中山大學 生物科學系研究所,碩士論文。
梁書豪,(2013) 甘藷半胱胺酸蛋白分解酶SPAE及SPCP2參與於塊根胰蛋白酶抑制因子的降解過程。國立中山大學 生物科學系研究所,碩士論文。
黃御軒,(2013) 分子選殖及定性分析一個 ethephon 可誘導且參與促進甘藷葉片老化的天門冬胺酸蛋白分解酶 SPAP 。國立中山大學 生物科學系研究所,碩士論文。
吳欣黛,(2010) 從甘藷葉片選殖 ethephon 可誘導之基因與定性分析。國立中山大 學生物科學系研究所,碩士論文。
Abe K, Emori Y, Kondo H, Suzuki K, Arai SS. (1987). Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds, The Journal Of Biological Chemistry 262:16793-16797.
Arai S, Watanabe H, Kondo H, Emori Y, Abe K. (1991). Papain-inhibitory activity of oryzacystatin, a rice seed cysteine proteinase inhibitor, depends on the central Gln-Val-Val-Ala-Gly region conserved among cystatin superfamily members. Journal of Biochemistry 109:294-298.
Balazadeh S, Wu A, Mueller-Roeber B. (2010). Salt-triggered expression of the ANAC092-dependent senescence regulon in Arabidopsis thaliana. Plant Signaling & Behavior 5:733-735.
Bangrak P, Chotigeat W. (2011). Molecular cloning and biochemical characterization of a novel cystatin from Hevea rubber latex. Plant Physiology and Biochemistry 49: 244-250.
Barrett AJ, Rawlings ND, Davie ME, Machleidt W, Salvesen G, Turk V. (1986). Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochemical Journal 236:312-312.
Barthakur S, Babu V, Bansal KC. (2001). Over-expression of osmotin induces proline accumulation and confers tolerance to osmotic stress in transgenic tobacco. Journal of Plant Biochemistry and Biotechnology 10:31-37.
Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P,Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, Suppresses hypersensitive cell death. European Journal Biochemistry 270:2593-2604.
Beyene G, Christine HF, Kunert1 KJ. (2006). Two new cysteine proteinases with specific expressionpatterns in mature and senescent tobacco (Nicotiana tabacum L.) leaves. Journal of Experimental Botany 57:1431-1443.
Bhattacharjee S. (1997). Membrane lipid peroxidation, free radical scavangers and ethylene evolution in Amaranthus as affected by lead and cadmium. Biologia Plantarum 40:131-135.
Bleecker AB, Patterson SE. (1997). Last exit: senescence, abcission, and meristem in Arabidopsis. Plant Cell 9:1169-1179.
Borrell AK, Hammer GL, Douglas ACL. (2000). Does maintaining green leaf area in sorghum improve yield under drought? I. Leaf growth and senescence. Crop Science 40:1026-1037.
Bolter CJ. (1993). Methyl jasmonate induces papain inhibitor(s) in tomato leaves. Plant Physiology 103:1347-1353.
Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang C, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J,Denby K, Mead A, Buchanan-Wollaston V. (2011). High-resolution temporal profiling of transcripts during arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell 23:873-894.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page T, Pink D. (2003). The molecular analysis of leaf senescence-aenomics approach. Plant Biotechnology Journal 1:3-22.
Buchanan-Wollaston V, Page T, Harrison E. ( 2005). Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis.The Plant Journal 42:567-585.
Chen HJ, Afiyanti M, Huang GH, Huang SS, Lin YH. (2011). Characterization of a leaf-type catalase in sweet potato (Ipomoea batatas Lam. (L.)). Botanical Studies 52:417-426.
Chen, HJ, Hou WC, Jane WN, Lin YH. (2000). Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomea batatas cv. Tainong 57). Plant Physiology 157:669-676.
Chen, HJ, Hou WC, Liu JS, Yang CY, Huang DJ, Lin YH. (2004).Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. Journal of Expermental Botany 55:825-835
Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH. (2003). Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of Plant Physiology 160:547-55.
Chen HJ, Huang GJ, Chen WS, Su CT, Hou WC, Lin YH. (2009). Molecular cloningand expression of a sweet potato cysteine protease SPCP1 from senescent
leaves. Botanical Studies 50:159-170.
Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of Plant Physiology 163:863-876.
Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH. (2010a). Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of Plant Physiology 167:838-847.
Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS, Lin YH. (2010b). Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Botanical Studies 51:171-181.
Chen HJ, Tsai YJ, Shen CY, Tsai TN, Huang GJ, Lin YH. (2012c). Ectopic expression
of sweet potato cysteine protease SPCP3 alters phenotypic traits and enhances drought stress sensitivity in transgenic Arabidopsis plants. Journal of Plant Growth Regulation 32:108-121
Chen, HJ, Wen IC, Huang GJ, Hou WC, Lin YH. (2008). Expression of sweet potato asparaginyl endopeptidase caused altered phenotypic characteristics in transgenic Arabidopsis. Botanical Studies 49:109-117.
Chen HJ, Wu SD, Huang GJ, Shena CY, Mufidah Afiyantia, Li WJ, LinYH. (2012a). Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation. Journal of Plant Physiology 169:86-97.
Chen HJ, Wu SD, Lin ZW, Huang GJ, Lin YH. (2012b). Cloning and characterization of a sweet potato calmodulin SPCAM that participates in ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. Journal of Plant Physiology 169:529-541
Chen WP, Li PH, Chen THH. (2000). Glycine betaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell & Environment 23:609-618.
Christova PK, Christov NK, Imai R. (2006). A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochiumnivale. Planta 223:1207-1218.
Chu MH, Liu KL, Wu HY, Yeh KW, Chen YS. (2011). Crystal structure of tarocystatin-papain complex: implications for the inhibition property of group-2 phytocystatins. Planta 234:243-254.
Clouse SD, Sasse JM. (1998). BRASSINOSTEROIDS: essential regulators of plant growth and development. Annual Review Plant Physiology Plant Molecular Biology 49:427-451.
Dalla Vecchia F, Rocca NL, Moro I, De Faveri S, Andreoli C, Rascio N. (2005) Morphogenetic,ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Science 168:329-338.
De J, Yakimova ET, Kapchina VM, Woltering EJ. (2002). A critical role for ethylene in hydrogen peroxide release during programmed cell death in tomato suspension cells. Planta 214:537-45.
Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M. (2001). Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Molecular Breeding 7:35-42.
Diop NN, Kidric M, Repellin A, Gareil M, d’Arcy-Lameta A, Pham
Thi AT, Zuily-Fodil Y. (2004). A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves.Federation of European Biochemical Societies 577:545-550.
Feller U, Anders I, Demirevska K. (2008). Degradation of rubisco and other chloroplast proteins under abiotic stress. Plant physiology 34:5-18.
Fischer J, Becker C, Hillmer S, Horstmann C, Neubohn B, Schlereth A, Senyuk V, ShutovA, Müntz K. (2000). The families of papain- and legumain-like cysteine proteinases from embryonic axes and cotyledons of Vicia seeds: developmental patterns, intracellular localization and functions in globulin proteolysis. Plant Molecular Biology 43:83-101.
Flowers TJ, Yeo AR. (1995). Breeding for salinity resistance in crop plants: where next? Australian Journal of Plant Physiology 22 875-884.
Fortmeier R, Schubert S. (1995). Salt tolerance of maize (Zea Mays L) - the role of sodium exclusion. Plant Cell & Environment 18:1041-1047.
Foyer CH, Vanacker H, Gomez LD, Harbinson J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review. Plant Physiology and Biochemistry 40:659-668.
Gaddour K, Vicente-Carbajosa J, Lara P, Isabel-Lamoneda I, Dı´az I, Carbonero P. (2001). A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Molecular Biology 45:599-608
Gan S, Amasino RM. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986-1988.
Gavino VC, Miller JS, Ikharebha SO, Milo GE, Cornwell DG. (1981). Effect of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures. The Journal of Lipid Research 22:763-769.
Gilroy EM, Hein I, van der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, Lopez EC, Borras-Hidalgo O, Pritchard L, Loake GJ, Lacomme C, Birch PRJ. (2007) Involvement of cathepsin B in the plant disease resistance hypersensitive response. The Plant Journal 52:1-13.
Girard C, Rivard D, Kiggundu A, Kunert K, Gleddie SC, Cloutier C, Michaud D. (2007). A multicomponent, elicitor-inducible cystatin complex in tomato, Solanum lycopersicum. New Phytologist 173:841-851.
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador Mdel C. (2011). Production of plant proteases in vivo and in vitro. Biotechnology Advances 29:983-996.
Greenway H, Munns R. (1980). Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31:149-190.
Grudkowska M, Zagdanska B. (2004) Multifunctional role of plant cysteine proteinases,
Acta Biochimica Polonica review 51:609-624.
Halliwell B, Gutteridge JM (1986). Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Archives of Biochemistry and Biophysics 246: 501-514.
Hara-Nishimura I, Hatsugai N, Nakaune S, Kuroyanagi M, Nishimura M. (2005). Vacuolar processing enzyme: an executor of plant cell death. Current Opinion in Plant Biology 8:404-408.
Harding SA, Guikema JA, Paulsen GM. (1990). Photosynthetic decline from high temperature stress during maturation of wheat. I. Interaction with senescence processes. Plant Physiology 92:648-653.
He Y, Hirotada F, David FH, Susheng G.(2002). Evidence supporting a role of jasmonic acid in arabidopsis leaf senescence, Plant Physiology 128:876-884.
Hong JK, Hwang JE, Chung WS, Lee KO, Cho YJ, Gal SW, Park BS, Lim CO. (2008). Expression of a chinese cabbage cysteine proteinase Inhibitor, BrCYS1, retards seed germination and plant growth in transgenic tobacco plant. Journal of Plant Biology 51: 347-353.
Hong JK, Hwang JE, Lim CJ, Yang KA, Jin ZL, Kim CY, Koo JC, Chung WS, Lee KO, LeeSY. Cho MJ, Lim CO. (2007). Over-expression of Chinese cabbage
phytocystatin 1 retards seed germination in Arabidopsis. Plant Science 172: 556-563.
Hwang JK, Hong JK, Je JH, Lee KO , Kim DY, Lee SY, Lim CO. (2009). Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6. Plant Cell Report 28:1623-1632.
Hwang JE, Hong JK, Lim CJ, Chen H, Je J, Yang KA , Kim DY,Choi YJ , Lee SY, Lim CO. (2010). Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Reports 29:905-915. Islam S. (2006). Sweetpotato (Ipomoea batatas L.) Leaf: Its Potential Effect on Human Health and Nutrition . Journal of Food Science 71:13-21.
Jing HC, Sturre MJ, Hille J, Dijkwel PP. (2002). Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. The Plant Journal 32:51-63.
Je J, Song C, Hwang JE, Chung WS, Lim CO. (2013). DREB2C acts as a transcriptional activator of the thermo tolerance-related phytocystatin 4 (AtCYS4) gene. Transgenic Research 23:109-123.
Jones JT, Mullet JE. (1995). A salt- and dehydration-inducible pea gene, Cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Molecular Biology 28:1055-1065
Jones ML, Larsen PB, Woodson WR. (1995) Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Molecular Biology 28:505-512.
Keyster M, Adams R, Klein A, Ludidi N. (2013). Nitric oxide (NO) regulates the expression of single-domain cystatins in Glycine max (soybean). Plant Omics Journal 6:183-192.
Koiwa H, Bressan RA, Hasegawa PM. (1997). Regulation of protease inhibitors and plant defense. Trends Plant Science 2:379-384.
Koiwa H, D’Urzo M., Assfalg-Machleidt I, Zhu-Salzman K, Shade RE,An H, Murdock LL, Machleidt W, Bressan RA, Hasegawa PM. (2001). Phage display selection of hairpin loop soyacystatin variants that mediate high affinity inhibition of a cysteine proteinase. The Plant Journal 27:383-391.
Kuzniak E, Sklodowska M. (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222(1):192-200.
Lim PO, Kin HJ, Nam HG. (2007). Leaf senescence. Annual Reviwe of Plant Biology review 58:115-136.
Lovelli S, Rivelli AR, Nardiello I, Perniola M,Tarantino E. (2000). Growth, leaf ion concentration, stomatal behaviour and photosynthesis of bean (Phaseolus vulgaris L.) irrigated with saline water. In: Acta Horticulturae. International Society for Horticultural Science 537:679-686.
Lutts S, Kinet JM, Bouharmont J. (1996). NaCl-induced Senescence in Leaves of Rice (Oryza sativa L.) Cultivars Differing in Salinity Resistance. Annals of Botany 78:389-398.
Margis R, Reis EM, Villeret V. (1998). Structural and phylogenetic relationships among plant and animal cystatins. Archives of Biochemistry and Biophysics 359:24-30.
Martínez DE, Bartoli CG, Grbic V, Guiamet JJ. (2007). Vacuolar cysteine proteases of wheat (Triticum aestivum L.) are common to leaf senescence induced by different factors. Journal of Experimental Botany 58:1099-1107.
Martinez M, Abraham Z, Carbonero P, Daz I . (2005). Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Molecular Genet Genomics 273:423-432.
Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I. (2007). Carboxyl terminal extended phytocystatins are bifunctional inhibitors of papain and and legumain cysteine proteinases. Federation of European Biochemical Societies 581:2914-2918.
Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I. (2003). Inhibition of Plant-Pathogenic fungi by the barley cystatin Hv-CPI (Gene Icy) is not associated with its cysteine-proteinase inhibitory properties. The American Phytopathological Society 16:876-883.
Masahiro K, Kazuko Y, Hideo T. (1993). Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175-182.
Massonneau A, Condamine P, Wisniewski JP, Zivy M, Rogowsky PM. (2005). Maize cystatins respond to developmental cues, cold stress and drought. Biochimica et Biophysica Acta 1729:186-199.
McCarthy I, Romero-Puertas MC, Palma JM. (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell & Environment 24:1065-1073.
Megdiche W, Passaquet C, Zourrig W, Fodil YZ, Abdelly C. (2009). Molecular cloning and characterization of novel cystatin gene in leaves Cakile maritima halophyte.Journal of Plant Physiology 166:739-749.
Misaka T, Kuroda M, Iwabuchi K, Abe K, Arai S. (1996). Soyacystatin, a novel cysteine proteinase inhibitor in soybean, is distinct in protein structure and gene organization from other cystatins of animal and plant origin. Federation of European Biochemical Societies 240:609-614.
Morris K, MacKerness SA, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V. (2000). Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal 23:677-685.
Mortley DG, Bonsi CK, Loretan PA, Morris CE, Hill WA,Ogbuehi CR. (1991).Evaluation of sweet potato genotypes for 76 adaptability to hydroponic systems. Crop Science 31:845-847.
Munne-Bosch S, Alegre L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Functional Plant Biology 31:203-216.
Müntz K. (2007). Protein dynamics and proteolysis in plant vacuoles. Journal of Experimental Botany 58:2391-2407.
Nagata K, Kudo N, Abe K, Arai S, Tanokura M. (2000). Three-dimensional solution
structure of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza
sativa L. japonica. Biochemistry 39:14753-14760.
Neuteboom LW, Matsumoto KO, Christopher DA. (2009). An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiology 151:515-527.
Nooden LD, Guiamet JJ, Jobn I. (1997). Senescence mechanisms. Physiologia plantarum 101:746-753.
Olsson P, Yilmaz JL, Sommarin M, Persson S, Bulow L. (2004). Expression of bovine calmodulin in tobacco plants confers faster germination on saline media. Plant Science 166:1595-1604.
Ori N, Juarez MT, Jackson D,Yamaguchi J, Banowetz G, Hake S. (1999). Leaf senescence is delayed in tobacco plants expressing the maize homeobox gene knotted1 under the control of a senescence-activated promoter. Plant Cell 11:1073-1080.
Outchkourov NS, de Kogel WJ, Schuurman-de Bruin A, Abrahamson M, Jongsma MA. (2004). Specific cysteine protease inhibitors act as deterrents of western flower thrips, Frankliniella occidentalis (Pergande), in transgenic potato. Plant Biotechnology Journal 2:439-448.
Pernas M, Sanchez-Monge R, Salcedo G. (2000). Biotic and abiotic stress can induce cystatin expression in chestnut. Federation of European Biochemical Societies 467:206-210
Pic E, de La Serve BT, Tardieu F, Turc O. (2002). Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. Plant Physiology 128:236-246.
Pirovani CP, Santiago AS, dos Santos LS, Micheli F, Margis R, da Silva Gesteira A, Alvim FC, Pereira GAG, de Mattos Cascardo JCM. (2010). Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms. Planta (2010) 232:1485-1497.
Prins A, van Heerden PD, Olmos E, Kunert KJ, Foyer CH. (2008) Cysteine
proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) vesicular bodies. Journal of Experimental Botany 59:1935-1950.
Prisco JT, Oleary JW. (1972). Enhancement of intact bean leaf senescence by NaCl salinity. Physiology Plantarum 27:95-100.
Quirino BF, Noh YS, Himelblau E, Amasino RM. (2000). Molecular aspects of leaf senescence. Trends in Plant Science 5:278-282.
Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB. (1999).A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996-998.
Ruperti B, Cattivelli L, Pagni S, Ramina A. (2002 ). Ethylene-responsive genes are differentially regulated during abscission, organ senescence and wounding in peach (Prunus persica). Journal of Experimental Botany 53:429-437.
Ryan SN, Laing WA, McManus MT. (1998). A cysteine proteinase inhibitor purified from apple fruit. Phytochemistry 49:957-963.
Sahu AC, Mishra D. (1987). Changes in some enzyme activities during excised rice leaf senescence under NaCl-stress. Biochemie and Physiologie der Pflanzen 182:501-505.
Sajid M, McKerrow JH. (2002). Cysteine proteases of parasitic organisms. Molecular Biochemical Parasitology 120:1-21.
Sambrook J, Fritsch EF, Maniatis T.(1989). Molecular cloning. Cold Spring Harbor Laboratory Press 1:7-8
Shyu DJH, Chou WM, Yiu TJ, LinCPC, Tzen JTC. (2004). Cloning, functional expression, and characterization of cystatin in sesame seed. Journal of Agricultural and food Chemistry 52:1350-1356.
Shyu DJH, Young YM, Lu HC, Cheng YM, Tzen JTC, Chou WM. (2011). Cloning, functional expression and characterization of a phytocystatin gene from jelly fig (Ficus awkeotsang Makino) achenes. Botanical Studies 52:407-416.
Smart C. (1994) Gene expression during leaf senescence. New Phytologist 126:419-448.
Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F. (2002). A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochemical and Biophysical Research Communications 296:1194-1199.
Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A. (1999). The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431-443.
Sugawara H, Shibuya K, Yoshioka T, Hashiba T, Satoh S. (2002). Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? Journal of Experimental Botany 53:407-413.
Sun X, Yang S, Sun M, Wang S, Ding X, Zhu D, Ji W, Cai H, Zhao C, Wang X, Zhu Y. (2014). A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Molecular Biology 85:33-48
Szewińska J, Prabucka B, Krawczyk M, Mielecki M, Bielawski W. (2013). The participation of phytocystatin TrcC-4 in the activity regulation of EP8, the main prolamin degrading cysteine endopeptidase in triticale seeds. Plant Growth Regul 69:131-137.
Szewińska J, Zdunek-Zastocka E, Pojmaj M, Bielawski W. (2012). Molecular cloning and expression analysis of triticale phytocystatins during development and germination of seeds. Plant Molecular Biologyl Report 30:867-877.
Tajima T, Yamaguchi A, Matsushima S, Satoh M, Hayasaka S, Yishimatsu K, Shioi Y. (2011). Biochemical and molecular characterization of senescence-related cysteine protease–cystatin complex from spinach leaf. Physiologia Plantarum 141:97-116.
Tian L, Zhang L, Zhang J, Song Y, Guo Y. (2009). Differential proteomic analysis of
soluble extracellular proteins reveals the cysteine protease and cystatin involved in suspension cultured cell proliferation in rice. Biochim. Biochimica et Biophysica Acta 1794:459-467.
Turk V, Bode W. (1991). The cystatins: protein inhibitors of cysteine proteinases. Federation of European Biochemical Societies 285:213-219.
Valdes-Rodrıguez S, Guerrero-Rangel A, Melgoza-Villagomez C, Chagolla-Lopez A, Delgado-Vargas F, Martı´nez-Gallardo N. (2007). Cloning of a cDNA encoding a cystatin from grain amaranth (Amaranthus hypochondriacus) showing a tissue-specific expression that is modified by germination and abiotic stress. Plant Physiology and Biochemistry 45:790-798
Van der Hoorn RA. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annual Review Of Plant Biology 59:191–223.
Volkmar KM, Hu Y, Steppuhn H. (1998). Physiological responses of plants to salinity: a review. Canadiam Journal Plant Science 78:19-27.
Wang KM, Kumar S, Cheng YS, Venkatagiri S, Yang AH, Yeh KW. (2008). Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta). Federation of European Biochemical Societies 275:4980-4989
Wang Y, ZhanY, Wu C, Gong S, Zhuc N, Chenc S, Li H. (2012). Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Sicence 191:93-99.
Weeda SM, Mohan Kumar GN, Richard Knowles N. (2010). Correlative changes in proteases and protease inhibitors during mobilisation of protein from potato (Solanum tuberosum) seed tubers. Functional Plant Biology 37:32-42.
Wilson CD, Pace RD, Bromfield E, Jones G, Lu JY. (1998a). Consumer acceptance of vegetarian sweet potato products intended for space missions. Life Support & Biosphere Science 5:339-346.
Wilson CD, Pace RD, Bromfield E, Jones G, Lu JY. (1998b). Sweet potato in a vegetarian menu plan for NASA's Advanced Life Support Program. Life Support & Biosphere Science 5:347-51.
Xu Q, Paulsen, AQ, Guikema JA, Paulsen GM. (1995). Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environmental and Experimental Botany 35:43-54.
Yang AH, Yeh KW. (2005). Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221:493-501.
Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. (2003). Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell & Environment 26:1621-1631.
Yoshida S. (2003). Molecular regulation of leaf senescence. Current Opinion Plant Biology 6:79-84.
Yeo AR, Lee KS, Izard P, Boursier PJ, Flowers TJ. (1991). Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.). Journal of Experimental Botany 42:881-889.
Zhang X , Liu S , Takano T. (2008). Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Molecular Biology 68:131-143
Zhao P, Zhou1 X, Zhang L, Wang W, Ma L, Yang L, Peng X , Bozhkov PV, Sun M. (2013) A bipartite molecular module controls cell death activation in the basal cell lineage of plant embryos. PLOS Bioligy 11:1001655.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.39.32
論文開放下載的時間是 校外不公開

Your IP address is 18.224.39.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code