Responsive image
博碩士論文 etd-0725114-150043 詳細資訊
Title page for etd-0725114-150043
論文名稱
Title
Ti-Cu-Ni-Si 四元系統於富鈦區平衡相圖研究
On the Quaternary System Ti-Cu-Ni-Si in Ti-rich Region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-18
繳交日期
Date of Submission
2014-08-25
關鍵字
Keywords
相圖、TiNi、Ti2Cu、鈦基合金、Ti-Cu-Ni-Si、固溶度
phase diagram, Ti2Cu, TiNi, solubility, Ti-Cu-Ni-Si, Ti base alloy
統計
Statistics
本論文已被瀏覽 5730 次,被下載 63
The thesis/dissertation has been browsed 5730 times, has been downloaded 63 times.
中文摘要
鈦基合金擁有質地輕、高強度、低楊氏係數、高抗腐蝕性與良好的生物相容性,因此常用於航空工業與生醫產業。而部分的鈦基合金也廣泛的應用在塊狀金屬玻璃材料中。研究指出Ti-Cu-Ni-Si合金系統可增強鈦基合金在高溫環境下的應用及良好的金屬玻璃成行性。在合金材料製作上對於合金性質的控制主要仰賴幾個條件因子,如合金元素的組成、熱處理條件、鑄造時冷卻速率與相結構關係。這些條件因子都可以利用可靠的合金相圖與特定溫度範圍的平衡相關係來進行熱力學模擬。因此建立Ti-Cu-Ni-Si四元系合金800 oC平衡相圖,希望能藉由平衡相圖的輪廓及熱分析實驗結果,提供尋找良好新鈦基合金材料成分的參考資料。
本研究主要是利用吸引式真空熔煉爐的方式配置不同組成的合金試片,將合金試片放置高溫管狀爐800 oC進行維持四週的均質化熱處理,使合金試片達到相平衡。達相平衡的合金試片分別進行SEM與EPMA分析。根據以上所有量測結果完成初步Ti-Cu-Ni-Si四元系800 oC於富鈦區平衡相圖。再利用初步的Ti-Cu-Ni-Si四元系800 oC於富鈦區平衡相圖進行選點,選擇特定區域的Ti-Cu-Ni-Si四元合金與純鈦擴散偶接合試片,並進行SEM與EPMA分析,擴散偶合金試片的分析結果將確認Ti-Cu-Ni-Si四元系800 oC於富鈦區平衡相圖的完整性。
此Ti-Cu-Ni-Si四元系800 oC於富鈦區平衡相圖發現了八個三相平衡區與四個四相平衡區,並利用相律與實驗結果推測,可能會有Ti-Ti-Ti2Cu-Ti3Si這個四相平衡區的存在。此實驗區域中並無發現Ti-Cu-Ni-Si四元相與Ti-Cu-Ni-Si三元相,只有單元相與二元相。
從添加不同Si含量的Ti-Cu-Ni合金可以得到,一個完整的Ti-Cu-Ni-Si四元合金800 oC平衡相圖,並建立了兩個不同Si含量的Ti-TiCu-TiNi 800 oC恆溫截面,分別為Ti-TiCu-TiNi (5 at. % Si) 800 oC恆溫截面與Ti-TiCu-TiNi (10 at. % Si) 800 oC恆溫截面。
Ti2Cu的最大固溶度範圍10.14±0.21at. % ~ 13.22±0.59 at. % Ni且對於Si幾乎沒有固溶度。TiNi的最大固溶度可達到30.89±0.28 at. % Cu且Si幾乎沒有固溶度。
Abstract
Titanium alloys have been used in the aerospace and biomedical industry due to their high specific strength, low Young’s modulus, high corrosion resistance, and good biocompatibility. Some of Ti-based alloys exist good glass formability and become bulk metallic glass (BMG) alloys. The objective of this study could provide the guide line for the alloy design of bulk metallic glasses. This study was performed by means of equilibrated alloys and diffusion couples. Electron microprobe analyses were used to determine the phase compositions and phase relationships.
There are four phases equilibrium, Ti3Si-Ti2Cu-Ti2Ni-Ti5Si3, Ti3Si-Ti2Cu-Ti2Ni-Ti, TiNi-Ti2Cu-Ti2Ni-Ti5Si3, were found in the Ti-Cu-Ni-Si alloy in Ti rich region at 800 oC. And no ternary or quaternary intermetallic phase found in this Ti rich region. All of the intermetallic phases were extended from the binary intermetallic phases. The solubility ranges of the intermetallic phases were determined. The maximum solubility of Cu that is determined by Ti2Cu-TiCu-TiNi-Ti5Si3 is up to 28.94 at.% in TiNi. Then in Ti2Cu-Ti2Ni-TiNi-Ti5Si3 region the max solubility of Ni in Ti2Cu is up to 13.22 at. %.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iv
英文摘要 vi
目錄 viii
壹、前言 1
貳、文獻回顧 3
2 Cu-Ni-Si-Ti系統合金發展與相關係 3
2.1 Cu-Ni-Ti合金的發展歷史 3
2.2 Cu、Ni、Ti合金系統結構及固態反應 4
2.2.1 Cu-Ti二元系合金平衡相圖 4
2.2.2 Cu-Ni-Ti合金的偽二元系統 4
2.2.3 Cu-Ni-Ti三元合金系統液相投影圖 6
2.2.4 Cu-Ni-Ti三元合金系統的恆溫截面圖 6
2.2.5 Cu-Ni-Ti三元合金的材料性質與其應用 7
2.3 Ni、Si、Ti合金系統結晶結構及固態反應 7
2.3.1 Ni-Ti二元系合金平衡相圖 7
2.3.2 Ti-Si二元系合金平衡相圖 8
2.3.3 Ni-Ti-Si三元合金系統的結晶結構與固相反應 8
2.3.4 Ni-Ti-Si三元合金系統液相投影圖與其平衡反應 9
2.3.5 Ni-Ti-Si三元合金系統恆溫截面 9
2.3.6 Ni-Ti-Si三元合金的材料性質與應用 10
2.4 Cu、Si、Ti合金系統的發展歷史 10
2.4.1 Cu、Si、Ti合金系統結晶結構及固態反應 10
2.4.2 Cu、Si、Ti三元合金系統液相投影圖與其平衡反應 11
2.4.3 Cu-Si-Ti三元合金系統恆溫截面 12
叁、實驗步驟 12
3.1合金試片的配製 13
3.2 擴散偶試片製作 15
3.3 均質化熱處理 15
3.4 SEM與EPMA的量測分析 16
3.5 DTA的量測分析 16
3.6 平衡相圖的量測分析 18
肆、結果與討論 18
4.1 Ti-Cu-Ni-Si四元系合金的EPMA成分分析 19
4.1.1 (Ti80Cu10Ni10)100-xSix 合金 19
4.1.2 (Ti80Cu5Ni15)100-xSix 合金 20
4.1.3 (Ti80Cu15Ni5)100-xSix 合金 21
4.1.4 (Ti70Cu10Ni20)100-xSix 合金 22
4.1.5 Ti-TiCu-TiNi(5 at. % Si)800 oC恆溫截面 23
4.1.7 Ti-Cu-Ni-Si於富鈦區相關係 28
4.2 Ti-Cu-Ni-Si合金 擴散偶實驗 31
4.2.1 B3擴散偶 31
4.2.2 B4擴散偶 33
伍、結論 33
Ti-Cu-Ni-Si 四元系統於富鈦區相平衡關係 34
陸、參考文獻 34
參考文獻 References
1. Zakharova, N.N., Kuzmin, S.L., Lichachev, V.A., “Large Reversible Deformations and Transformation Plasticity in TiNiCu Composites” (in Ukrainian), Akad. Nauk. Ukr. SSR, Metallofizika, 1981, 43:p.53-63
2. Ermolaev, V.A., Zakharova, N.N., Lichachev, V.A., Masterova, M.V., “Dissipative Properties and Structure in the System Ti-Ni-Cu” (in Ukrainian), Akad. Nauk Ukr. SSR, Metallofizika, 1982, 44(6):p.68-74
3. Chernov, D.B., Monasevich, L.A., Bashanova, N.N., Paskal, Yu.I., “Influence of Copper on the Structure Transformation in TiNi Along Sections TiNi-TiCu and TiNi-Cu of the Ternary System Ti-Ni-Cu”, Phys. Met. Metall., 59(6), 173-175 (1985) translated from Fiz. Met. Metalloved., 1985, 459(6):p.1226-1228
4. Lo, Y.C., Wu, S.K., Horng, H.E., “A Study of B2 - B19 - B19' Two-Stage Martensitic Transformation in a Ti50Ni40Cu10 Alloy”, Acta Metall. Mat., 1993, 41(3):p.747-759
5. Fukuda, T., Kitayama, M., Kakeshita, T., Saburi, T., “Martensitic Transformation Behavior of a Shape Memory Ti-40.5Ni-10Cu Alloy. Affected by the C11b-Type Precipitates”, Mater. Trans., JIM, 1996, 37(10):p.1540-1546
6. Pushin, V.G., Volkova, S.B., Matveeva, N.M., “Structural and Phase Transformations in Quasi-binary TiNi-TiCu Alloys Rapidly Quenched from the Melt: I. High-Copper Amorphous Alloys”, The Phys. Metals Metallogr., 1997, 83:p.275-282 (1997)
7. Pushin, V.G., Volkova, S.B., Matveeva, N.M., “Structural and Phase Transformation in Quasibinary TiNi-TiCu Alloys Rapidly Quenched from the Melt: II. Alloys with Mixed”, The Phys. Metals Metallogr., 1997, 83:283-288
8. Pushin, V.G., Volkova, S.B., Matveeva, N.M., “Structural and Phase Transformations in Quasi-Binary TiNi-TiCu Alloys Rapidly Quenched from the Melt: III. Mechanisms of Crystallization”, The Phys. Metals Metallogr., 1997, 83:p.435-443
9. Pushin, V.G., Volkova, S.B., Matveeva, N.M., Yurchenko, L.I., Chistyakov, A.S., “Structural and Phase Transformations in Quasi-Binary TiNi-TiCu Alloys Rapidly Quenched from Melt: VI. Martensitic Transformations”, Phys. Met. Metallogr., 1997, 84:p.441-448
10. Louzguine, D.V., Inoue, A., “Crystallization Behavior of Ti50Ni25Cu25 Amorphous Alloy”, J. Mater. Sci., 2000, 35, p.4159-4164
11. Voronin, V.I., Naish, V.E., Novoselova, T.V., Pushin, V.G., Sagaradze, I.V., “Structures of Monoclinic Phases in Titanium Nickelide: I. Transformation Cascade B2-B19-B19”, Phys. Met. Metallogr., 2000 89(1):p.12-18
12. Potapov, P.L., Shelyakov, A.V., Schryvers, D., “On the Crystal Structure of TiNi-Cu Martensite”, Scr. Mater., 2001, 44:p.1-7
13. J.L. Murray, “Binary Alloy Phase Diagrams”, ASM International, Materials Park, Ohio, 1992:p.775-777
14. Tang, W., Sandstrom, R., Wei, Z.G., Miyazaki, S., Verhoeven, J.D., “Experimental Investigation and Thermodynamic Calculation of the Ti-Ni-Cu Shape Memory Alloys”, Metall. Mat. Trans., 2000, 31A:p.2423-2430
15. Yakushiji, M., “Phase Diagram of CuTi-NiTi Quasi-Binary System”, Technol. Rep. Kansai Univ., 1986, 28:p.149-158
16. Alisova, S.P., Volynskaya, N.V., Budberg, P.B., Kobylkin, A.N., “Phase Equilibria in Alloys of the TiCu-TiNi-TiCuNi System”, Russ. Metall., 1986, (5):p.207-209 translated from Izv. Akad. Nauk SSSR, Met., 1986 (5):p.210-212
17. Alisova, S.P., Lutskaya, N.V., Budberg, P.B., Bychkova, E.I., “Phase Constitution of the TiCu-TiNi-TiCo (TiFe) Systems in the Equilibrium and Metastable States”, Russ. Metall., 1993, (3):p.205-212 translated from Izv. Ross. Akad. Nauk, Met., 1993, 3:p.222-229
18. Pushin, V.G., Volkova, S.B., Matveeva, N.M., “Structural and Phase Transformations in Quasi-Binary TiNi-TiCu Alloys Rapidly Quenched from the Melt: III. Mechanisms of Crystallization”, The Phys. Metals Metallogr., 1997, 83:p.435-443
19. Pushin, V.G., Volkova, S.B., Matveeva, N.M., Yurchenko, L.I., Chistyakov, A.S., “Structural and Phase Transformations in Quasi-Binary TiNi-TiCu Alloys Rapidly Quenched from Melt: VI. Martensitic Transformations”, Phys. Met. Metallogr., 1997, 84:p.441-448
20. Tang, W., Sandstroem, R., Miyazaki, S., “Phase Equilibria in the Pseudobinary Ti0.5Ni0.5-Ti0.5Cu0.5 System”, J. Phase Equilib., 2000, 21(3):p.227-234
21. Van Loo F.J.J., Bastin, G.F., Leenen, A.J.H., “Phase Relations in the Ternary Ti-Ni-Cu System at 800 and 870°C”, J. Less Common Met., 1978, 57:p.111-121
22. K. P. Gupta, “The Cu-Ni-Ti (Copper-Nickel-Titanium) system”, Journal of Phase Equilibria and Diffusion, 2007:p.541-547
23. Takeuchi, Y., Watanabe, M., Yamabe, S., Wada, T., “Eutectic Ti- and Zr-Brazes” (in German), Metall, 1968, 22:p.18-15
24. Budberg, P.B., Alisova, S.P., “Phase Diagram of the System Ti-Ti2Ni- Ti2Cu” (in Russian), Dokl. Akad. Nauk SSSR, 1979, 244(6):p.1370-1373
25. Budberg, P.B., Alisova, S.P., “Konstitution Diagram of the System Titanium-Copper-Nickel in the Region Ti-Ti2Ni-Ti2Cu” (in Russian), Fazovye Ravnovesiya v Metallicheskykh Splavakh, Nauka, Moscow, 1981
26. Yakushiji, M., Kondo, Y., Kamei, K., “Phase Equilibria in the Ti-Rich Region of the Ti-Ni-Cu System” (in Japanese), Nippon Kinzoku Gakkai Shi, 1982, 46(6):p.571-577
27. Kovneristyi, Yu.K., Alisova, S.P., Molokanov, V.V., Budberg, P.B., “Phase Composition of the Ti-Ti2Ni-TiCu System” (in Russian), Dokl. Akad. Nauk SSSR, 1983, 269:p.1116-1119
28. Chepeleva, V.P., “Structure and Phase Composition of Ti-Ni-Cu Alloys”, Sov. Powder Metall., Met. Ceram., 1984, 23(7):p.539-543, translated from Poroshk. Met., 1984, (7):p.52-57
29. Fedorov, V.N., Zakharov, V., Kucherov, V.I., Osintsev, O.E., “Investigation of the Copper-Rich Range of the Cu-Ni-Ti Phase Diagram”, Russ.Metall., 1971, 6:p.128-131
30. Yakushiji, M., Kondo, Y., Kamei, K., “Reactions with Melt in the Copper-Rich Region of the Copper-Nickel-Titanium System” (in Japanese), Nippon Kinzoku Gakkaishi, 1980, 44(6):p.615-619
31. Alisova, S.P., Budberg, P.B., Kovneristyi, Yu.K., “Phase Transformations in Copper Rich Ti-Cu-Ni Alloys”, Russ. Metall.,1992, (5):p.115-118 translated from Izv. Akad. Nauk SSSR, Met., 1992, (5):p.126-128
32. Joszt, K., “Pseudobinary Cu-Ni3Ti System” (in Polish), Prace Inst. Hutniczych, 1967, 19:p.303-313
33. Yakushiji, M., Kondo, Y., Kamei, K., “Phase Equlibria in the Cu-Rich Region of the Cu-Ni-Ti System and Constitution of the Cu-Ti Quasi-Binary System” (in Japanese), J. Jpn. Inst. Met., 1980 44:p.620-624
34. Pfeifer, H.U., Bhan, S., Schubert, K., “On the Constitution of the System Ti-Ni-Cu and Several Quasihomologous Alloys” (in German), J. Less Common Met., 1968, 14:p.291-302
35. Drits, M.E., Bochvar, N.R., Guzei, L.S., Lysova, E.V., Padeshnova, E.M., Rokhlin, L.L., Turkina, N.I., Binary and Multicomponent Copper-Based Systems (in Russian), Abrikosov, N.Kh. (Ed.), Nauka, Moscow, 1979:p.183
36. Jena, A.K., Rajendraprasad, S.B., Gupta, K.P., Sharma, R.C., “The Copper-Nickel-Titanium System”, J. Alloy Phase Diagrams, 1987, 43(2):p.87-104
37. Fokuda, T., Saburi, T., Kakeshita, T., Kitayama, M., “Shape Memory Behaviour of Ti-40.5Ni-10Cu Alloy Affected by C11b-Type Precipitates”, Mat. Trans, JIM, 1997, 38:p.107-111
38. Otsuka, K., Ren, X., “Recent Developments in the Research of Shape Memory Alloys”, Intermetallics, 1999, 7:p.511-528
39. Roesner, H., Shelyakov, A.V., Glezer, A.M., Feit, K., Schlossmacher, P., “Study of an Amorphous-Crystalline Structured Ti-25Ni-25Cu (at.%) Shape Memory Alloys”, Mater. Sci. Eng., 1999 A273-275:p.733-737
40. Silvain, J.F., Chazelas, J., Lahaye, M., Trombert, S., “The Use of Shape Memory Alloy NiTi Particles in SnPbAg Matrix: Interfacial Chemical Analysis and Mechanical Characterisation”, Mater. Sci. Eng., 1999, A273-275:p.818-823
41. Wu, S.K., Lin, H.C., “Recent Development of TiNi-Based Shape Memory Alloys in Taiwan”, Mater. Chem. Phys., 2000, 64:p.81-92
42. Dean, A.V., Owen, R.C., “Age-Hardening in Nickel-30% Copper Alloys Containing Titanium and Aluminium”, J. Inst. Met., 1972, 100:p.181-184
43. Harling, O.K., Grant, N.J., Kohse, G., Ames, M., Lee, T.S., Hobbs, L.W., “Neutron Irradiation Scoping Study of Twenty-Five Copper-Base Materials”, J. Mater. Res., 1987, 42(5):p.568-579
44. Dean, A.V., Owen, R.C., “Age-Hardening in Nickel-30% Copper Alloys Containing Titanium and Aluminium”, J. Inst. Met., 1972, 100:p.181-184
45. Knights, R., Wilkes, P., “The Precipitation of Titanium in Copper and Copper-Nickel Base Alloys”, Acta Met., 1973, 21:p.1503-1514
46. Chepeleva, V.P., Delevi, V.G., Trunevich, L.V., Manzheleeva, T.N., Demyanchuk, A.F., “Alloying of a Powder Metal Titanium-Nickel Composite of Eutectic Composition” (in Russian), Poroshk. Met., 1984, (2):p.57-60
47. J.L. Murray, “Binary Alloy Phase Diagrams”, ASM International, Materials Park, Ohio, 1992:p.1240
48. J.L. Murray, “Binary Alloy Phase Diagrams”, ASM International, Materials Park, Ohio, 1992:p.1420
49. Westbrook, J.H., Di Cerbo, R.K., Peat, A.J., Rep. 58-rc-2117, General Electronic Research Laboratory, 1958
50. Spiegel, F.X., Bardos, D., Beck, P.A., “Ternary G and E Silicides and Germanides of Transition Elements”, Trans. Metall. Soc. AIME, 1963, 227:p.575-579
51. Bardos, D.I., Gupta, K.P., Beck, P.A., “Ternary Laves Phases with Transition Elements and Silicon”, Trans. Metall. Soc. AIME, 1961, 221:1087-1088
52. Hu, X., Chen, G., Ion, C., Ni, K., “The 1100°C Isothermal Section of the Ti-Ni-Si Ternary System”, J. Phase Equilib., 1999, 20(5):p.508-514
53. Westbrook, J.H., Di Cerbo, R.K., Peat, A.J., Rep. 58-rc-2117, General Electronic Research Laboratory, 1958
54. Markiv, V.Y., Gladyshevskii, E.I., Kripyakevich, P.I., Fedoruk, T.I., “The System Titanium-Nickel-Silicon”, Inorg. Mater., 2, 1126-1128 (1966) translated from Izv. Akad. Nauk SSSR, Neorg. Mater., 1966 2:p.1317-1319
55. Hsieh, S.F., Wu, S.K., Lin, H.C., “Transformation Temperatures and Second Phases in Ti-Ni-Si Ternary Shape Memory Alloys with Si≦2 at.%”, J. Alloys Compd., 2002, 339:p.162-166
56. Hsieh, S.F., Wu, S.K., Lin, H.C., Martensitic Transformation of a Ti-rich Ti51Ni47Si2 Shape Memory Alloy”, J. Alloys Compd., 2002, 335:p.254-261
57. Beattie, H.J., VerSnyder, F.L., “A New Complex Phase in a High-Temperature Alloy”, Nature, 1956, 178:p.208-209
58. Beattie, H.J., Hagel, W.C., “Intermetallic Compounds in Titanium-Hardened Alloys”, J. Met. Trans. AIME, 1957, 209:p.911-917
59. Spiegel, F.X., Bardos, D., Beck, P.A., “Ternary G and E Silicides and Germanides of Transition Elements”, Trans. Metall. Soc. AIME, 1963, 227:p.575-579
60. Williams, K.J., “The 1000°C (1273 K) Isotherm of the Ni-Si-Ti System from 0 to 16 % Si and 0 to 16 % Ti”, J. Inst. Met., 1971, 99:p.310-315
61. Y. Kawazoe, T. Masumoto, K. Suzuki, A. Inoue, A.-P. Tsai, J.-Z. Yu, T. Aihara Jr. and T. Nakanomyo, “Ni-Si-Ti (Nickel-Silican-Titanium)”, Landolt-Börnstein - Group III Condensed Matter, 2006, 11(A4):p.1-11
62. Budberg, P.B., Alisova, S.P., Kobilkin, A.N., “Phase Equilibria in the Ternary System Ti-Ti5Si3-Ti2Ni”, Dokl. Akad. Nauk USSR, 1980, 250(5):p.1137-1140
63. Markiv, V.Y., Gladyshevskii, E.I., Kripyakevich, P.I., Fedoruk, T.I., “The System Titanium-Nickel-Silicon”, Inorg. Mater., 1966, 2:p.1126-1128 translated from Izv. Akad. Nauk SSSR, Neorg. Mater., 1966, 2:p.1317-1319
64. Williams, K.J., ”The 1000°C (1273 K) Isotherm of the Ni-Si-Ti System from 0 to 16 % Si and 0 to 16 % Ti”, J. Inst. Met., 1971, 99:p.310-315
65. Nickl, J.J., Sprenger, H., “About New Compounds in the Titanium-Copper-Silicon Ternary System” (in German), Z. Metallkd., 1969, 60:p.136-139
66. Jangg, G., Kieffer, R., Blaha, A., Sultan, T., “Solubility of Disilicides in Auxiliary Metal Melts” (in German), Z. Metallkd., 1972, 63:p.670-676
67. G. Effenberg and S. Ilyenko, “Cu-Si-Ti (Copper-Silicon-Titanium)”, Landolt-Börnstein - Group IV Physical Chemistry, 2006, 11(A4):p.1-15
68. Sprenger, H., “The Ternary Systems (Titanum, Zirconium, Hafnium)-Copper-Silicon” (in German), J. Less-Common Met., 1974, 34:p.39-71
69. Budberg, P.B., Alisova, S.P., “Phase Diagram of the Ti-Ti5Si3-Ti2Cu System” (in Russian), Dokl. Akad. Nauk SSR, 1975, 224(1):p.157-159
70. Chang, YA, Neumann, J.J., Mikula, A., Goldberg, D., “Cu-Si-Ti”, INCRA Monograph, Ser.6, Phase Diagram and Thermodynamic Properties of Ternary Copper-Metals Systems”, 1979:p.665-668
71. Alisova, S.P., Budberg, P.B., “Phase Transformations in the System Ti-Ti5Si3 - Ti2Cu”, Russ. Metall. (Engl. Transl.), 1976, 5:p.182-188
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code