Responsive image
博碩士論文 etd-0725115-100007 詳細資訊
Title page for etd-0725115-100007
論文名稱
Title
使用次網格時域有限差分法模擬飛彈模型內線路的電磁干擾特性
Electromagnetic Interference of Signal Traces Inside a Missile Using the FDTD Subgridding Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-17
繳交日期
Date of Submission
2015-08-25
關鍵字
Keywords
時域有限差分法、適應性時間步階、電磁干擾、次網格
Adaptive time step, FDTD, Electromagnetic Interference, Subgrid
統計
Statistics
本論文已被瀏覽 5671 次,被下載 543
The thesis/dissertation has been browsed 5671 times, has been downloaded 543 times.
中文摘要
現代化的生活,許多設備越來越精密、敏感,使得電磁干擾的問題逐漸被人重視,設計者對於模擬的需求也相對提高,常需要考慮多種情況的複雜問題,但是頻域演算法的運算時間隨問題的複雜度呈曲線成長,而時域演算法則呈線性成長,在高度複雜問題情況時,時域演算法效率將會大過頻域的演算法,像是飛彈的電磁干擾就相當適合使用時域的演算法來求解。
FDTD次網格法可以使用不同精度的網格描述整體計算空間區域內的結構,提升演算法的模擬效率,故次網格法的穩定性及準確度為各方研究的熱門課題。
本文提出適應性調整時間步階結合非均勻網格法來做為主次網格邊界面上的連結機制,以達到一次性的連結面處理來增加穩定度,且不需調降時間步階可提升運算速度。
最後使用上述提出的方法模擬一個飛彈近似模型的電磁干擾效應,將印刷電路板以次網格描述,其餘結構則以主網格描述,主次網格採用1:5的比例建置,以一個高斯平面波不同角度打向飛彈模型,模擬電磁脈衝對飛彈內印刷電路板的影響,與FEM演算法軟體HFSS比較,說明我們方法的可行性。
Abstract
Electromagnetic interference problems have become serious gradually because many devices are getting more sophisticated and sensitive in modern life. Designers often need to consider a variety of situations complex problems so their demand for software also enhanced. Computation time of the frequency domain algorithm grows with the complexity of the problem, but the time domain algorithm is linear growth. Therefore, the efficiency of time domain algorithm will be greater than the frequency domain algorithm at highly complex issue. It’s quite suitable to analyze electromagnetic interference of missiles using time domain algorithm.
Subgridding FDTD method can enhance the efficiency of simulation by using different precision grid to describe any structure in the whole computational domain. Therefore, the stability and accuracy of the subgrid method are both popular topics for studies around the world. In this thesis, we proposed the adaptive time step method combined with non-uniform grid method to link boundary between main grid and local grid. One-time’s surface coupling process doesn’t need to lower time step, therefore, the stability and the computing speed can be improved effectively.
In the second part, we analyze electromagnetic interference of missile’s model using the method described above. The PCB structure is built by local grid, the remaining structures are built by main grid, two types of grid are defined by a scale of one to five. To simulate electromagnetic pulse, a Gaussian plane wave was passed through the missile model in different angle. To explain the feasibility of our approach, the result will be compared with HFSS at last.
目次 Table of Contents
目錄
論文審定書.................................................................................................i
誌謝............................................................................................................ii
中文摘要...................................................................................................iii
英文摘要...................................................................................................iv
目錄............................................................................................................v
圖表目錄...................................................................................................viii
第一章 序論 1
1.1研究目的與方法 1
1.2 論文大綱 3
第二章 FDTD演算法 5
2.1 FDTD介紹 5
2.1.1 FDTD公式推導 5
2.1.2 Courant 穩定準則 8
2.1.3 吸收邊界 8
2.2 集總電路元件的模擬 10
2.2.1 電阻 10
2.2.2 阻抗性電壓源 11
2.2.3 電容 12
2.2.4 電感 12
2.2.5 二極體 12
2.3 FDTD模擬 13
第三章 保形時域有限差分法及非均勻網格法 15
3.1 Conformal FDTD 介紹 15
3.2 Conformal FDTD 公式推導 15
3.3 非均勻網格法介紹 21
3.4 非均勻網格法推導 22
3.5 非均勻Yee網格的誤差評估 25
第四章 次網格法 27
4.1 傳統次網格法介紹 27
4.1.1 傳統次網格演算法 27
4.1.2 數值不穩定現象 28
4.2 適應性調整時間步階程序介紹 31
4.3 FDTD次網格法 34
4.4 次網格法模擬驗證 38
4.5 使用非均勻網格之次網格法 42
第五章 飛彈模型之電磁干擾模擬 46
5.1 介紹 46
5.2 印刷電路板的耦合機制 47
5.3 電磁波對印刷電路板的干擾 49
5.4 斜向入射平面波之電磁干擾與圓柱飛彈模型模擬 52
5.5 模擬圖形ripple狀的改善 56
第六章 結論 60
參考文獻 References
[1] K. S. Yee, “Numerical solution of initial boundary value problems involoving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas and Propagat., vol. 14, no. 3, pp. 300-307, May 1966.
[2] Okoniewski, Michal., E. Okoniewski, and M. A. Stuchly, “Three-dimensional subgridding algorithm for FDTD,” IEEE Trans. Antennas and Propagat., vol. 45, pp. 422-429, Mar. 1997.
[3] Navarro, E. A., N. T. Sangary, and J. Litva, “Some considerations on the accuracy of the nonuniform FDTD method and its application to waveguide analysis when combined with the perfectly matched layer technique,”IEEE Trans.Microwave Theory Tech.,vol.44,pp.1115-1124,July 1996.
[4] C. Taylor, “External interaction of the nuclear EMP with aircraft and missles,” IEEE Trans. Antennas and Propagat., vol. AP-26, no. 1, pp. 64-76, Jan.1978.
[5] J. F. Prewitt, “Missle EMP interaction: Dielectric and plume-connection effects,” IEEE Trans. Nucl. Sci., vol. NS-25, no. 6, pp. 1412-1416, Dec.1978.
[6] J. D. Nordgard and G. S. Smith, “Electromagnetic simulation of missle exhaust plume,” IEEE Trans.Electromagn. Compat., vol. EMC-29, no. 2, pp. 157-168, May 1978.
[7] C. F. Bunting, “Shielding effectiveness in a two-dimensional reverberation chamber using finite element techniques,” IEEE Trans. Electromagn. Compat., vol. 45, no. 3, pp. 548–552, Aug. 2003.
[8] Z. A. Khan, C. F. Bunting, and M. D. Deshpande, “Shielding effectiveness of metallic enclosures at oblique and arbitrary polarizations,” IEEE Trans. Electromagn. Compat., vol. 47, no. 1, pp. 112–122, Feb. 2005.
[9] T. Konefal, J. F. Dawson, A. C. Marvin, and M. P. Robinson, “A fast circuit model description of the shielding effectiveness of a box with imperfect gaskets or apertures covered by thin resistive sheet coatings,” IEEE Trans. Electromagn. Compat., vol. 48, no. 1, pp. 134–144, Feb. 2006.
[10] M. S. Sarto and A. Tamburrano, “Innovative test method for the shielding effectiveness measurement of conductive thin films in a wide frequency range,” IEEE Trans. Electromagn. Compat., vol. 48, no. 2, pp. 331–341, May 2006.
[11] V. Rajamani, C. F. Bunting, M. D. Deshpande, and Z. A. Khan, “Validation of modal/MoM in shielding effectiveness studies of rectangular enclosures with apertures,” IEEE Trans. Electromagn. Compat., vol. 48, no. 2, pp. 348–353, May 2006.
[12] E. S. Siah, K. Sertel, J. L. Volakis, V. V. Liepa, and R. Wiese, “Coupling studies and shielding techniques for electromagnetic penetration through apertures on complex cavities and vehicular platforms,” IEEE Trans. Electromagn. Compat., vol. 45, no. 2, pp. 245–256, May 2003.
[13] G. Eriksson, H.-J. Åsander, M. Bäckström, and J. Lorén, “Microwave coupling into a generic object. FDTD simulations and comparisons with measurements,” in Proc. IEEE Int. Electromagn. Compat. Symp., vol. 1, pp. 313–318, Aug. 2001.
[14] J.-K. Du, J.-W. Ahn, S.-M. Hwang, and J.-G. Yook, “Analysis of coupling effects in waveguides using the BLT equation and numerical methods,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–3, 2012.
[15] Y.-M. Park, Y. Lee, Y.-S. Chung, C. Cheon, and H.-K. Jung, “Analysis of electromagnetic field penetration through apertures based on electromagnetic topology,” in Proc. IEEE Int. Antennas Proag. Symp., Jul. 2008, vol. 1, pp. 1–4.
[16] Y.-M. Park, Y. Lee, Y.-S. Chung, C. Cheon, and H.-K. Jung, “Electromagnetic field penetration analysis of a rectangular aperture-backed cavity based on combination of electromagnetic topology and mode matching,” Electromagnetics, vol. 29, pp. 447–462, 2009.
[17] Y. Li, J. Luo, G. Ni, and J. Shi, “Electromagnetic topology analysis to coupling wires enclosed in cavities with apertures,” Math. Prob. Eng., vol. 2010, pp. 1–11, 2010.
[18] J.-K. Du, S.-M. Hwang, J.-W. Ahn, and J.-G. Yook, “Analysis of coupling effects to PCBs inside waveguide using the modified BLT equation and full-wave analysis,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3514–3523, Oct. 2013.
[19] O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. on Antennas Propagat., vol. 45, no. 5, pp. 753–759, May 1997.
[20] Berenger, J., “A perfectly matched layer for the absorbing boundary condition,”J. Computat. Phys., vol. 114, pp. 185-200, 1994.
[21] Monk, P., and E. Suli, “Error estimates for Yee’s method on non-uniform grids,” IEEE Trans. Magnetics, vol. 30, pp. 3200-3203, Sept. 1994.
[22] Okoniewski, Michal., E. Okoniewski, and M. A. Stuchly, “Three-dimensional subgridding algorithm for FDTD,” IEEE Trans. Antennas and Propagat., vol. 45, pp. 422-429, Mar. 1997.
[23] Kim, I. S.,and W.J.R. Hoefer, “A local mesh refinement algorithm for the time domain-finite difference method using Maxwell’s curl equations,” IEEE Trans.Microwave Theory Tech., vol. 38, pp. 812-815, June 1990.
[24] C-M Kuo and C-W Kuo, “A novel FDTD time-stepping scheme to calculate RCS of curved conducting Objects adaptively adjusted time steps,” IEEE Trans. Antennas and Propagat.,vol.6,no.10,pp.5127-5134,Oct.2013.
[25] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 1460-1463, Dec. 1995.
[26] 張德成,使用保形時域有限差分法分析印刷電路板中過孔結構,國立中山大學電機工程研究所碩士論文,2007
[27] I. Junqua, L. Guibert, and J.-P. Parmantier, “Assessment of high frequency coupling in a generic object by the power balance method,” Zurich Electromagnetic Interference (EMC) Symposium, Sep. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code