Responsive image
博碩士論文 etd-0725116-093612 詳細資訊
Title page for etd-0725116-093612
論文名稱
Title
熱處理對冷軋錳矽鋁鋼機械性質的研究
Effect of heat treatment on mechanical properties of cold-rolled Mn-Si-Al steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-10
繳交日期
Date of Submission
2016-08-26
關鍵字
Keywords
錳矽鋁鋼、熱處理、顯微組織、沃斯田鐵、機械性質、加工硬化
heat-treatment, Mn-Si-Al steels, microstructure, austenite, mechanical properties, work hardening
統計
Statistics
本論文已被瀏覽 5745 次,被下載 24
The thesis/dissertation has been browsed 5745 times, has been downloaded 24 times.
中文摘要
本研究的目標是探討熱處理製程對兩種合金含量的錳矽鋁鋼材的顯微組織與機械性質的影響。其中A鋼材成份為0.16C-2.0Mn-1.0Si-1.2Al,B鋼材成份為0.16C-5.7Mn-1.6Si-1.6Al,主要製程則包含熱軋、熱軋退火、冷軋、冷軋退火與變韌鐵持溫處理。利用掃描式電子顯微鏡、背向散射電子繞射儀與X光繞射儀分析不同製程鋼材的顯微組織,以拉伸試驗量測機械性質,了解製程參數與機械性質之關係,並且探討影響其強度與塑性的機制。
A鋼材經過735 oC-10 hr的熱軋退火處理後命名為AA鋼材,而未經熱軋退火製程則命名為AO鋼材。結果顯示,AA鋼材中γ/M相的Mn含量由退火前的1.9 wt%上升到4.6 wt%,沃斯田鐵體積分率則從2%上升到9%。而B鋼材經過(620 oC、650 oC、680 oC)-10 hr的熱軋板退火處理後,γ/M相中的Mn含量約為12~13 wt%,沃斯田鐵體積分率則分別為15%、25%與29%。證實長時間的熱軋退火製程,可使錳富集到沃斯田鐵相中提升其穩定性。
AO與AA鋼材經冷軋與冷軋退火後,其拉伸曲線均呈現雙相鋼特性,亦即於拉伸時沒有降伏點與降伏延伸現象。其中由於AO鋼材於冷軋退火後,原本在鋼材中分佈較不均勻的γ/M組織,反而得以均勻分佈於肥粒鐵晶界,進而有效的強化鋼材。而AA鋼材在冷軋退火後,γ/M粒徑較大且肥粒鐵內錳含量較低,因此其抗拉強度(800~900 MPa)普遍低於AO鋼材(900~1000 MPa),而錳富集於沃斯田鐵的程度亦不足以使Ms溫度低於室溫,因此無法進一步提升延性。
B鋼材分別經620 oC、650 oC與680 oC退火後,雖然沃斯田鐵含量具有明顯的差異,但經冷軋退火後卻具有相似的顯微組織與拉伸特性,表示在B鋼材的製程中,其性質由後段溫度較高的冷軋退火所主導。
B鋼材於熱軋退火、冷軋與冷軋退火後,隨退火溫度升高依序呈現超細晶強化、應變誘發塑性、應力誘發塑性與雙相強化的機械性質特徵。當鋼材於660 oC進行退火,由於各相組織細小,鋼材降伏強度極高(1124 MPa),但延性較差(21.1%)。而鋼材在700 oC與725 oC退火後,在全程應變中,其加工硬化率均可維持在1000 MPa以上,為應變誘發塑性的強化機制,因此具有優異的延伸率(33.6%、29.3%)。鋼材於750 oC退火後,其加工硬化率在降伏延伸後大幅提升至10000 MPa再快速下降,因此延伸率較低(22.3%),此外降伏強度大幅下降至約700 MPa,推測有少量穩定性較差的沃斯田鐵在變形初期即以應力誘發模式變態。鋼材於775 oC退火後,其拉伸曲線不具有降伏點與降伏延伸現象,但與雙相鋼相比,其加工硬化率明顯較為緩慢的下降,可能為TRIP效應所造成。而鋼材於800 oC退火後,殘留沃斯田鐵僅剩10%,其拉伸曲線不具有降伏點與降伏現象,且加工硬化率曲線與雙相鋼類似。
B8冷軋板經過750 oC-60 sec退火並於460 oC持溫300 sec之試片,其顯微組織與機械性質皆與B8-750近似。因此可知B8冷軋板於兩相區退火後施以變韌鐵相變持溫處理,對於其顯微組織與機械性質皆無明顯的影響。
Abstract
The study investigated the effect of heat treatments including hot-band annealing (HBA), cold-rolled annealing (CRA), and isothermal bainitic annealing (IBA) on microstructure and mechanical properties of two Mn-Si-Al steels. Steel A contains 0.16 wt%C, 2.0 wt%Mn, 1.0 wt%Si, 1.2 wt%Al, and steel B contains 0.16 wt%C, 5.7 wt%Mn, 1.6 wt%Si, 1.6 wt%Al. The microstructures of the steels were examined by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD), and the mechanical properties of two steels were measured by tensile tests.
The experimental results showed that after hot band annealing (735 oC-10 hr), the volume fraction of retained austenite in steel A increased from 2% to 9%, and the Mn content in the phase of γ/M increased from 1.9 wt% to 4.6 wt%. For steel B, the Mn content of γ/M were around 12 to 13 wt%, and the volume fraction of retained austenite were 15%, 25%, and 29%, when the hot-band were annealed at 620 oC, 650 oC and 680 oC, respectively. It proves that the Mn content and the stability of austenite is increased after a long-time, hot-rolled annealing process.
The stress-strain curves of the AO (without HBA) and AA (with HBA) steels, after cold-rolled and cold-rolled annealing, showed characters of free from yield point and yield-point elongation, which are similar to there of the dual-phase steel. The γ/M in the AO steels distributed uniformly at the grain boundary of ferrite, so it could improve the strength of the steels. The grain size of γ/M in the AA steels was larger and the Mn content of ferrite was lower, so the tensile strength (800~900 MPa) is lower than the AO steels (900~1000 MPa). Since the Mn content of γ/M was not high enough to suppress the Ms temperature below room temperature, no enough austenite could be retained to improve the ductility of the steels.
Steel B showed different mechanical characteristics at various temperatures. After annealed at 660 oC, steel B exhibited a complex phase microstructure and a yield stress of 1124 MPa with an elongation of 21.1%. The high yield ratio character is similar to that of metals strengthened by ultrafined grains. When the steel was annealed at temperature 700 oC or 725 oC, high work hardening rates of 1000 MPa or above can be maintained throughout the whole deformation history. The high work hardening rate was attributed from strain induced martensitic transformation which results in high ductilities of 29-34%. When the annealing temperature was increased to 750 oC, the work hardening rate increased dramatically to a high value of 9600 MPa in the early stage of deformation and then decreased gradually on deformation. A high tensile strength of 1300 MPa and moderate elongation of 22.3% were yield. The rapid increase of work hardening rate indicated that the stability of austenite was low and it transformed to martensite in the early stage of deformation. When the steel was annealed at 775 oC, the yield point and yield point elongation are absent in the stress-strain curve. However, the work hardening rate of the 775 oC-annealed steel decreased less rapidly than that of regular dual-phase steel, indicate that TRIP effect was still active in this sample. When the steel was annealed at 800 oC, it contained 10% austenite. The yield point and yield point elongation were absent in the stress-strain curve, and the work hardening behavior was similar to the dual-phase steel.
No significant change of tensile behavior was observed for steel B which was isothermally hold at 460 oC for 300 sec then annealed at 750 oC for 60 sec, demonstrating that the volume fraction of austenite did not change with the application of IBA.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract v
總目錄 vii
表目錄 ix
圖目錄 x
第一章、前言 1
第二章、文獻回顧 3
2.1 第一代先進高強度鋼-TRIP鋼製程與機械性質之彙整 3
2.1.1 合金元素之作用 3
2.1.2 兩相區退火 4
2.1.3 變韌鐵相變持溫 5
2.1.4 TRIP鋼材之金相結構 7
2.1.5 熱處理導引成分區隔分佈 8
2.2 麻田散鐵相變化 9
2.2.1 熱滯性麻田散鐵 9
2.2.2 應力及應變誘發麻田散鐵相變態 10
2.2.3 合金元素與Ms、Md之關係 11
2.3 TRIP效應 12
2.4 第三代先進高強度鋼製程與機械性質之彙整 14
2.5 中山大學過去於TRIP鋼材領域之研究 15
第三章、實驗方法 17
3.1 試片準備 17
3.1.1 試片製備流程 17
3.2 顯微組織分析 18
3.2.1 掃描式電子顯微鏡分析 18
3.2.2 X光繞射分析 18
3.2.3 計點法 19
3.3 機械性質分析 19
3.3.1 硬度分析 19
3.3.2 拉伸試驗分析 19
第四章、實驗結果 20
4.1 熱軋板 20
4.1.1 顯微組織分析 20
4.1.2 硬度分析 24
4.2 冷軋板 24
4.2.1 兩相區退火 24
4.2.1.1 機械性質分析 24
4.2.1.2 顯微組織分析 26
4.2.2 變韌鐵相變持溫 30
4.2.2.1 機械性質分析 30
4.2.2.2 顯微組織分析 31
第五章、討論 33
5.1 熱軋板退火 33
5.2 冷軋板退火 34
第六章、結論 40
第七章、參考文獻 42
參考文獻 References
[1] J. Galan, L. Samek, P. Verleysen, K. Verbeken, Y. Houbaert, Advanced high strength steels for automotive industry, Rev. Metal. Madrid.,48.2 (2012) 118-31
[2] "ULSAB-AVC body structure materials", Technical transfer dispath NO.6, World Steel Association, (2001)
[3] H. Aydin, E. Essadiqi, In-Ho Jung, S. Yue, Development of 3rd generation AHSS with medium Mn content alloying compositions, Mater. Sci. Eng. A, 564 (2013) 501-8.
[4] J. Mahieu, J. Maki, B. C. De Cooman, S. Claessens, Phase transformation and mechanical properties of Si-free CMnAl transformation-induced plasticity–aided steel, Metall. Mater. Trans. A, 33A (2002) 2573-80.
[5] M. De Meyer, D. Vanderschueren, B.C. De Cooman, The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels, ISIJ Int., 39 (1999) 813-22.
[6] J. Mahieu, S. Claessens, B. C. De Cooman, Galvanizability of high-strength steels for automotive applications, Metall. Mater. Trans. A, 32A (2001) 2905-8
[7] E. M. Bellhouse, J. R. McDermid, Effect of continuous galvanizing heat treatments on the microstructure and mechanical properties of high Al-low Si transformation induced plasticity steels, Metall. Mater. Trans. A, 41A (2010) 1460-73.
[8] V. F. Zacky, E. R. Parker, D. Fahr, R. Busch, The enhancement of ductility in high-strength steels , ASM Trans. Q., 60 (1967) 252-9.
[9] H. K. D. H. Bhadeshia, TRIP-Assisted Steels, ISIJ Int., 42 (2002) 1059-60.
[10] P. J. Jacques, Transformation-induced plasticity for high strength formable steels, Curr. Opin. Solid St. M., 8 (2004) 259-65.
[11] 徐銘鍾,錳矽鋼材的機械性質與顯微組織的研究,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2014)
[12] 馬楷軒,熱處理對錳鋁鋼機械性質之影響,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2014)
[13] 歐志鴻,退火處理對中錳含量鋼材之微觀組織與拉伸性質的影響,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2013)
[14] 周紹誠,熱處理對鐵錳合金鋼機械性質之影響,碩士論文,高雄,國立中山大學材料與光電科學學系研究所,(2014)
[15] B. S. Chul, K. Seongju, J. Y. Sool, K. Ohjoon, Effects of alloying elements on mechanical properties and phase transformation of cold rolled TRIP steel sheets, ISIJ Int., 41 (2001) No. 3, 290-7.
[16] C. G. Lee, S. J. Kim, C. S. Oh, S. Lee, Effects of heat treatment and Si addition on the mechanical properties of 0.1 wt% C TRIP-aided cold-rolled steels, ISIJ Int., 42 (2002) No. 10, 1162–8.
[17] Y. Sakuma, O. Matsumura, H. Takechi, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions , Metall. Trans. A, 22 (1991) 489-98.
[18] L. Samek, E. De Moor, J. Penning, B. C. De Cooman, Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels, Metall. Mater. Trans. A, 37A (2006) 109-24.
[19] L. Tsukatani, S. Hashimoto, T. Inoue, Effects of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ Int., 31 (1991) 992-1000.
[20] T. Bhattacharyya, S. B. Singh, S. Das, A. Haldar, D. Bhattacharjee, Development and characterisation of C-Mn-Al-Si-Nb TRIP aided steel, Mater. Sci. Eng. A, 528 (2011) 2394-400.
[21] R. Abbaschian, L. Abbaschian, R. E. Reed-Hill, Physical Metallurgy Principles, forth ed., Cengage Learning, Stamford, 2008.
[22] S. Li, R. Zhu, I. Karaman, R. Arroyave, Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels, Acta Mater., 61 (2013) 2884-94.
[23] H. K. D. H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Met. Sci., 16 (1982) 159-66.
[24] H. K. D. H. Bhadeshia, A rationalization of shear transformations in steels, Acta Metall., 29 (1981) 1117-30.
[25] P. J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. V. Humbeeck, F. Delannay, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementiteprecipitation and austenite retention , ISIJ Int., 41 (2001) 1068.
[26] 王涵聖,沃斯田鐵在不銹鋼及合金鋼之Displactive相變態與其衍生之顯微組織研究,博士論文,台北,國立台灣大學材料科學與工程學研究所,(2005)
[27] J. Bouquerel, K. Verbeken, B. C. De Cooman, Microstructure-based model for the static mechanical behavior of multiphase steels , Acta Mater., 54 (2006) 1443-56.
[28] J. Chiang, B. Lawrence, J. D. Boyd, A. K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels , Mater. Sci. Eng. A, 528 (2011) 4516-21.
[29] Z. Q. Liu, G. Miyamoto, Z. G. Yang, T. Furuhara, Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys , Acta Mater., 61 (2013) 3120-9.
[30] J. Lis, J. Morgiel, A. Lis, The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques , Mater. Chem. Phys., 81 (2003) 466-8.
[31] B. C. De Cooman, P. Gibbs, S. Lee, D. K. Matlock, Transmission electron microscopy analysis of yielding in ultrafine-grained medium Mn transformation-induced plasticity steel , Metall. Mater. Trans. A, 44A (2013) 2563-72.
[32] H. K. D. H. Bhadeshia, Worked examples in the Geometry of Crystals , 2nd ed., London, Inst. Metals, (2001)
[33] D. P. Koistinen, R. E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels , Acta. Metall., 7 (1959) 59-60.
[34] A. Das, P. C. Chakraborti, S. Tarafder, H. K. D. H. Bhadeshia, Analysis of deformation induced martensitic transformation in stainless steels , Mater. Sci. Tech., 27 (2011) 366-70.
[35] A. Perlade, O. Bouaziz, Q. Furnemont, A physically based model for TRIP-aided carbon steels behaviour , Mater. Sci. Eng. A, 356 (2003) 145-52.
[36] J. Wang, S. V. Zwaag, Stabilization mechanisms of retained austenite in trans-formation-induced plasticity steel, Metall. Mater. Trans. A, 32A (2001) 1527-39.
[37] N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright et al, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater., 53 (2005) 5439-47.
[38] A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. Charaï , Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels , Mater. Sci. Eng. A , 518 (2009) 89-96.
[39] A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. Charaï , A methodology suitable for TEM local measurements of carbon concentration in retained austenite , Mater. Charact., 59 (2008) 1307-11.
[40] K. K. Park, S. T. Oh, D. I. Kim, J. H. Han, et al., In situ deformation behavior of retained austenite in TRIP steel, Mater. Sci. Forum, 408-12 (2002) 571-6.
[41] I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of microstructure on the stability of retained austenite in transformation induced plasticity steels, Metall. Mater. Trans. A, 35 (2004) 2331-40.
[42] K. Sugimoto, M. Kobayashi, S. Hashimoto, Ductility and strain-induced trans-formation in a high-strength transformation-induced plasticity-aided dual-phase steel , ISIJ Int., 32 (1992) 1311-8.
[43] M. Cai, Z. Li, Q. Chao, P. D. Hodgson, A novel Mo and Nb microalloyed medium Mn TRIP steel with maximal ultimate strength and moderate ductility, Metall. Mater. Trans. A, 45 (2014) 5624-34.
[44] Z. H. Cai, H. Ding, X. Xue, J. Jiang, Q. B. Xin, R. D. K. Misra, Significance of control of austenite stability and three-stage work-hardening behavior of an ultrahigh strength–high ductility combination transformation-induced plasticity steel, Scripta Mater., 68 (2013) 865-8.
[45] H. Qu, G. M. Michal, A. H. Heuer, Third Generation 0.3C-4.0Mn advanced high strength steels through a dual stabilization heat treatment: austenite stabilization through paraequilibrium carbon partitioning, Metall. Mater. Trans. A, 45 (2014) 2741-9.
[46] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes, ISIJ Int., 43 (2003) No. 3, 438–46.
[47] 謝克昌,未發表數據
[48] N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, S. van der Zwaag, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling, Acta Mater, 53 (2005), 5439-47.
[49] K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel, Mater. Sci. Eng. A , 604 (2014) 135-41.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code