Responsive image
博碩士論文 etd-0725116-100344 詳細資訊
Title page for etd-0725116-100344
論文名稱
Title
高雄都會區大氣細懸浮微粒上多環芳香烴的調查研究
The Study of Atmospheric Polycyclic Aromatic Hydrocarbons on PM2.5 in Kaohsiung Metropolitan Area
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-17
繳交日期
Date of Submission
2016-08-25
關鍵字
Keywords
集群分析、致癌風險評估、主成分分析、氣團逆軌跡傳輸、PM2.5、PM2.5-PAHs
Back trajectory analysis, Lifetime lung cancer risk, HCA, PCA, PM2.5-PAHs, PM2.5
統計
Statistics
本論文已被瀏覽 5726 次,被下載 40
The thesis/dissertation has been browsed 5726 times, has been downloaded 40 times.
中文摘要
本研究於2015年1月至2015年12月期間,分別於高雄市內海岸區域(NSYSU)、工業區(SG)、住宅區(FS)、住商混合市區(AG)分別設置採樣測站,採集大氣PM2.5並分析其多環芳香烴化合物,進而探討高雄地區大氣PM2.5-PAHs濃度的時空變化情形。研究結果顯示,各測站 PM2.5-PAHs年平均濃度以FS測站最高、NSYSU測站最低,分別為NSYSU(0.96±0.88 ng/m3)、SG(1.64±1.11 ng/m3)、FS(1.68±1.34 ng/m3)、AG(1.48 ±1.07 ng/m3),其成份組成分佈以高分子量(5-7環)的PAHs化合物為主。與歷年結果相比,本研究結果與2013年相近,高於2014年,推測可能與2014年降雨量較多有關。
根據氣團逆軌跡傳輸路徑分析結果,高雄地區大氣氣團跨境傳輸多發生在冬季(16日)、春季(6日)和秋季(5日)。95個採樣日中,共計有27日可能受到跨境傳輸之影響,且多以中國大陸地區的貢獻為主,發生頻率約為28%。藉由氣團逆軌跡分析,發現季節性PM2.5-PAHs的濃度高低差異,除了氣候條件和當地污染來源的貢獻外,也會受到鄰近地區大氣跨境傳輸的影響。主成分分析(PCA)及集群分析(HCA)結果指出,四個採樣測站PM2.5-PAHs來源皆是以汽柴油混合燃燒之交通污染來源為主,區域活動特性明顯在SG測站有比較強的燃煤訊號、FS測站則有較強的焚化爐排放訊號。在終身致癌風險評估方面,四個採樣測站歷年致癌風險值變化不大,以NSYSU測站之風險值最低(平均為9.87×10-6),其餘測站致癌風險值均高出NSYSU測站1倍以上。以高雄地區而言,其結果說明生活在NSYSU測站地區每100萬人中約有10人會受到顯著的影響而致癌,SG測站地區每100萬人中可能有20人, FS與AG測站附近區域則可能在每100萬人中同樣有19人受到影響。
Abstract
PM2.5 samples of four sampling sites in Kaohsiung city were collected and analyzed for polycyclic aromatic hydrocarbons (PAHs) from January to December 2015. The sampling sites include NSYSU site (coastal area), SG (industrial area), FS (residential area) and AG (mixed residential and commercial area). The temporal and spatial variations of PM2.5-PAHs in Kaohsiung city were explored. The annual mean concentrations of atmospheric PM2.5-PAHs at NSYSU, SG, FS and AG were 0.96, 1.64, 1.68, and 1.48 ng m-3, respectively. The highest average concentration of PM2.5-PAHs was found at FS, followed by SG, while the lowest one was found at NSYSU. The compositional pattern of PAHs shows that the high molecular weight (HMW) PAHs dominate in PM2.5 compared to the low molecular weight (LMW) PAHs. The annual mean concentrations of atmospheric PM2.5 and PM2.5-PAHs were similar to those found in 2013, but higher than 2014. It may be related to the higher rainfall in 2014.
The concentrations of PM2.5-PAHs was affected by many factors such as different weather conditions, local sources emission and transboundary pollutant transport from neighboring area. According to back trajectory analysis, about 28% of the 95 sampling days were affected by the contributions from neighboring areas. Those transboundary days include 16, 6 and 5 days in the winter, early spring and autumn, respectively. The results of PCA and HCA both suggest that sources of PM2.5-PAHs mainly came from the gasoline and diesel engine emissions, with partially contributed from coal combustion in SG, as well as from waste incinerator exhausts in FS. The estimated lifetime lung cancer risk were within acceptable condition (9.87×10-6 for NSYSU) or a little bit higher than the WHO guideline value (10-5) for four sampling sites in recent 3 years. It is noted that the risk of other sampling sites was found twice
as high as NSYSU.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
附表目錄 xii
第一章 前言 1
1-1研究動機 1
1-2 研究目的 1
第二章 文獻回顧 2
2-1 大氣懸浮微粒 2
2-1-1 大氣懸浮微粒來源 2
2-1-2 懸浮微粒對人體之影響 2
2-2多環芳香烴介紹(PAHs) 3
2-2-1 PAHs物理化學特性 3
2-2-2 PAHs的毒理特性 5
2-2-3 大氣PAHs的來源 7
2-2-4大氣PM2.5-PAHs 相關研究 8
第三章 研究方法 9
3-1 研究架構與流程 9
3-2 材料與儀器 10
3-2-1 材料 10
3-2-2 試藥及器具前處理 10
3-2-3 設備與分析儀器 11
3-3空氣樣品採集 12
3-3-1 採樣時間與地點 12
3-3-2 採樣方法 13
3-4 樣品分析 14
3-4-1 PAHs分析 14
3-5品質保證與品質管制 (QA/QC) 18
3-5-1 空白試驗 18
3-5-2 方法偵測極限 18
3-5-3 擬似標準品回收率 18
3-6 資料分析 19
3-6-1 主成份分析 (Principal Components Analysis, PCA) 19
3-6-2 集群分析 (Hierarchical Cluster Analysis, HCA) 19
3-6-3 大氣逆軌跡模式 20
第四章 結果與討論 21
4-1 大氣PM2.5濃度變化 21
4-1-1 PM2.5濃度空間分布 21
4-1-2 PM2.5濃度時間變化 24
4-2 大氣PM2.5-PAHs濃度變化 28
4-2-1 大氣PM2.5-PAHs濃度分佈 28
4-2-2 PM2.5-PAHs文獻比較 30
4-2-3 PM2.5-PAHs成份組成 32
4-2-4 PM2.5與PM2.5-PAHs 之相關性 35
4-3大氣逆軌跡氣團傳輸分析 38
4-3-1 冬季海源氣團傳輸路徑案例 38
4-3-2 冬季陸源氣團跨境傳輸案例 39
4-3-3 大氣氣團跨境傳輸事件日發生頻率 41
4-4 PM2.5-PAHs來源分析 47
4-4-1 主成分分析(Principal Component Analysis, PCA) 47
4-4-2 集群分析(Hierarchical Cluster Analysis, HCA) 52
4-5大氣PM2.5-PAHs致癌風險評估 58
4-5-1大氣PM2.5-BaP濃度之時空變化 58
4-5-2大氣PM2.5-PAHs暴露致癌風險評估 60
4-5-3 終生肺癌風險評估文獻比較 64
第五章 結論與建議 65
5-1 結論 65
5-2 建議 66
參考文獻 67
附錄 73
參考文獻 References
Allen, J.O., Mayo, P.R., Hughes, L.S., Salmon, L.G., Cass, G.R., 2001. Emissions of Ize-Segregated Aerosols from on-road vehicles in the Caldecott Tunnel. Environmental Science & Technology, 35 (21):4189-4197.
ATSDR, 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHS).
http://www.atsdr.cdc.gov/ToxProfiles/TP.asp?id=122&tid=125.Accessed date:
April/ 20/ 2016. The Agency for Toxic Substances and Disease Registry.
Baek, S.O., Field, R.A., Goldstone, M.E., Kirk, P.W., Lester, J.N., Perry, R., 1991. A review of atmospheric Polycyclic Aromatic Hydrocarbons: sources, fate and behavior. Water, Air, and Soil Pollution, 60 (3): 279-300.
Bandowe, B.A.M., Meusel, H., Huang, R.j., Ho, K., Cao, J., Hoffmann, T., Wilcke, W., 2014. PM2.5-bound Oxygenated PAHs, Nitro-PAHs and Parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Science of the Total Environment, 473: 77-87.
Bjørseth, A., Ramdahl, T., 1985. Source and emission of PAHs. Handbook of Polycyclic Aromatic Hydrocarbons. In: Bjørseth, A., Ramdahl,T.[eds], Marcel Dekkerr, Inc Press, New York and Basel.
Bootdee, S., Chantara, S., Prapamontol, T., 2016. Determination of PM2.5 and Polycyclic Aromatic Hydrocarbons from incense burning emission at shrine for health risk assessment. Atmospheric Pollution Research, 7(4): 680-689.
Boström, C.E., Gerde, P., Hanberg, A., Jernström, B., Johansson, C., Kyrklund, T., Rannug, A., Törnqvist, M., Victorin, K., Westerholm, R., 2002. Cancer risk assessment, indicators, and guidelines for Polycyclic Aromatic Hydrocarbons in the ambient air. Environmental Health Perspectives, 10: 451-488.
Bourotte, C., Forti, M.C., Taniguchi, S., Bícego, M.C., Lotufo, P.A., 2005. A wintertime study of PAHs in fine and coarse Aerosols in São Paulo city, Brazil. Atmospheric Environment, 39(21): 3799-3811.
Callén, M.S., Cruz, M.T., López, J.M., Murillo, R., Navarro, M.V., Mastral, A.M., 2008. Long-range Atmospheric transport and local pollution sources on PAH concentrations in a South European urban area. Fulfilling of the European Directive. Water, Air, and Soil Pollution, 190(1): 271-285.
Draxler, R.R., Rolph, G.D., 2010. HYSPLIT-Hybrid Single Particle Lagrangian Integrated Trajectory Model. https://www.ready.noaa.gov/HYSPLIT.php. Accessed date: April/ 20/ 2016. NOAA Air Resources Laboratory.
Duan, J., Bi, X., Tan, J., Sheng, G., Fu, J., 2005. The differences of the size distribution of Polycyclic Aromatic Hydrocarbons (PAHs) between urban and rural sites of Guangzhou, China. Atmospheric Research,78(3–4): 190-203.
Fernandez, P., Grimalt, J.O., Vilanova, R.M., 2002. Atmospheric Gas-particle partitioning of Polycyclic Aromatic Hydrocarbons in high mountain regions of Europe. Environmental Science & Technology, 36(6): 1162-1168.
Fraser, M.P., Kleeman, M.J., Schauer, J.J., Cass, G.R., 2000. Modeling the Atmospheric concentrations of individual Gas-phase and Particle-phase organic compounds. Environmental Science & Technology, 34(7): 1302-1312.
Grimmer, G., 1983. Environmental carcinogens: Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology, 24: 1581-1588.
Gu, Z.P., Feng, J.L., Han, W.L., Li, L., Wu, M.H., Fu, J.M., Sheng, G.Y., 2010. Diurnal variations of Polycyclic Aromatic Hydrocarbons associated with PM2.5 in Shanghai, China. Journal of Environmental Sciences, 22(3): 389-396.
Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science & Technology, 30(3): 825-832.
Hoppel, W.A., Fitzgerald, J.W., Frick, G.M., Larson, R.E., Mack, E.J., 1990. Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean. Journal of Geophysical Research: Atmospheres, 95 (D4): 3659-3686.
Jia, Y., Stone, D., Wang, W., Schrlau, J., Tao, S., Simonich, S.L.M., 2011. Estimated reduction in cancer risk due to PAH exposures if source control measures during the 2008 Beijing Olympics were sustained. Environmental Health Perspectives, 119(6): 815-820.
Kameda, Y., Shirai, J., Komai, T., Nakanishi, J., Masunaga, S., 2005. Atmospheric Polycyclic Aromatic Hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Science of the Total Environment, 340(1–3): 71-80.
Khan, M.F., Shirasuna, Y., Hirano, K., Masunaga, S., 2010. Characterization of PM2.5, PM2.5-10 and PM > 10 in ambient air, Yokohama, Japan. Atmospheric Research, 96(1): 159-172.
Kleeman, M.J., Schauer, J.J., Cass, G.R., 2000. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science & Technology, 34(7): 1132-1142.
López Cancio, J.A., Castellano, A.V., Martín, S.S., Rodríguez, J.F.S., 2004. Size distributions of PAHs in ambient air particles of two areas of Las Palmas de Gran Canaria. Water, Air, and Soil Pollution, 154(1): 127-138.
Lai, I.C., Lee, C.L., Zeng, K.Y., Huang, H.C., 2011. Seasonal variation of atmospheric Polycyclic Aromatic Hydrocarbons along the Kaohsiung Coast. Journal of Environmental Management, 92(8): 2029-2037.
Larsen, R.K., Baker, J.E., 2003. Source apportionment of Polycyclic Aromatic Hydrocarbons in the urban atmosphere:  A comparison of three methods. Environmental Science & Technology, 37(9): 1873-1881.
Li, C.S., Ro, Y.S., 2000. Indoor characteristics of Polycyclic Aromatic Hydrocarbons in the urban atmosphere of Taipei. Atmospheric Environment, 34(4): 611-620.
Liu, J., Man, R., Ma, S., Li, J., Wu, Q., Peng, J., 2015. Atmospheric levels and health risk of Polycyclic Aromatic Hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Marine Pollution Bulletin, 100(1): 134-143.
Lv, J., Xu, R., Wu, G., Zhang, Q., Li, Y., Wang, P., Liao, C., Liu, J., Jiang, G., Wei, F., 2009. Indoor and outdoor air pollution of Polycyclic Aromatic Hydrocarbons (PAHs) in Xuanwei and Fuyuan, China. Journal of Environmental Monitoring, 11(7): 1368-1374.
Ma, W.L., Li, Y.F., Qi, H., Sun, D.Z., Liu, L.Y., Wang, D.G., 2010. Seasonal variations of sources of Polycyclic Aromatic Hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere, 79(4): 441-447.
MacDonald, R.W., Barrie, L.A., Bidleman, T.F., Diamond, M.L., Gregor, D.J., Semkin, R.G., Strachan, W.M.J., Li, Y.F., Wania, F., Alaee, M., Alexeeva, L.B., Backus, S.M., Bailey, R., Bewers, J.M., Gobeil, C., Halsall, C.J., Harner, T., Hoff, J.T., Jantunen, L.M.M., Lockhart, W.L., Mackay, D., Muir, D.C.G., Pudykiewicz, J., Reimer, K.J., Smith, J.N., Stern, G.A., Schroeder, W.H., Wagemann, R., Yunker, M.B., 2000. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Science of the Total Environment, 254(2-3): 93-234.
Masiol, M., Hofer, A., Squizzato, S., Piazza, R., Rampazzo, G., Pavoni, B., 2012. Carcinogenic and mutagenic risk associated to airborne Particle-phase Polycyclic Aromatic Hydrocarbons: A source apportionment. Atmospheric Environment, 60: 375-382.
Mastral, A.M., Callen, M.S., Garcia, T., Lopez, J.M., 2001. Benzo (a) pyrene, benzo (a) anthracene, and dibenzo (a,h) anthracene emissions from coal and waste tire energy generation at Atmospheric Fluidized Bed Combustion (AFBC). Environmental Science & Technology, 35 (13): 2645-2649.
NAPCA, 1969. Air Quality Criteria for Particulate Matter. U.S. Department of Health, Education, and Welfare, U.S.A.
Nisbet, I.C.T., LaGoy, P.K., 1992. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3): 290-300.
Ohura, T., Amagai, T., Sugiyama, T., Fusaya, M., Matsushita, H., 2004. Characteristics of particle matter and associated Polycyclic Aromatic Hydrocarbons in indoor and outdoor air in two cities in Shizuoka, Japan. Atmospheric Environment, 38(14): 2045-2054.
Oliveira, R.L., Loyola, J., Minho, A.S., Quiterio, S.L., Azevedo, D.d.A., Arbilla, G., 2014. PM2.5-Bound Polycyclic Aromatic Hydrocarbons in an area of Rio de Janeiro, Brazil impacted by emissions of light-duty vehicles fueled by ethanol-blended gasoline. Bulletin of Environmental Contamination and Toxicology, 93(6): 781-786.
Park, S.S., Kim, Y.J., Kang, C.H., 2002. Atmospheric Polycyclic Aromatic Hydrocarbons in Seoul, Korea. Atmospheric Environment, 36(17): 2917-2924.
Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. The Journal of the American Medical Association, 287(9): 1132-1141.
Ravindra, K., Bencs, L., Wauters, E., Hoog, J., Deutsch, F., Roekens, E., Bleux, N., Berghmans, P., Van Grieken, R., 2006. Seasonal and site-specific variation in vapour and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmospheric Environment, 40(4): 771-785.
Simcik, M.F., Eisenreich, S.J., Lioy, P.J., 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment, 33(30): 5071-5079.
Sweet, C.W., Vermette, S.J., Landsberger, S., 1993. Sources of toxic trace elements in urban air in Illinois. Environmental Science & Technology, 27(12): 2502-2510.
Tang, I.N., Munkelwitz, H.R., Davis, J.G., 1977. Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols. Journal of Aerosol Science, 8(3): 149-159.
Teixeira, E.C., Mattiuzi, C.D.P., Agudelo-Castaeda, D.M., Garcia, K.d.O., Wiegand, F., 2013. Polycyclic Aromatic Hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environmental Monitoring and Assessment, 185(11): 9587-9602.
Van Vaeck, L., Broddin, G., Van Cauwenberghe, K., 1979. Differences in particle size distributions of major organic pollutants in ambient aerosols in urban, rural, and seashore areas. Environmental Science & Technology, 13(12): 1494-1502.
Wang, X., Chen Ren, J., Chen Bing, H., Kan Hai, D., 2013. Application of Statistical distribution of PM10 concentration in air quality management in 5 representative cities of China. Biomedical and Environmental Sciences, 26(8): 638-646.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., An, Z., 2006. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment, 40(16): 2935-2952.
Whitby, K.T., Liu, B.Y.H., Husar, R.B., Barsic, N.J., 1972. The minnesota aerosol-analyzing system used in the Los Angeles smog project. Journal of Colloid and Interface Science, 39(1): 136-164.
WHO, 2005. WHO air quality guidelines for particulate matter,ozone, nitrogen, dioxide and sulfur dioxide-global update 2005, Summary of risk assessment. World Health Organozation Press, Switzerland.
Xu, L., Chen, X., Chen, J., Zhang, F., He, C., Zhao, J., Yin, L., 2012. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China. Atmospheric Research, 104–105: 264-272.
Zhang, L., Jacob, D.J., Boersma, K.F., Jaffe, D.A., Olson, J.R., Bowman, K.W., Worden, J.R., Thompson, A.M., Avery, M.A., Cohen, R.C., Dibb, J.E., Flock, F.M., Fuelberg, H.E., Huey, L.G., McMillan, W.W., Singh, H.B., Weinheimer, A.J., 2008. Transpacific transport of ozone pollution and the effect of recent Asian emission increases on air quality in North America: an integrated analysis using satellite, aircraft, ozonesonde, and surface observations. Atmospheric Chemistry and Physics, 8(20): 6117-6136.
Zhang, R., Jing, J., Tao, J., Hsu, S.C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao, Y., Shen, Z., 2013. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics, 13(14): 7053-7074.
Zielinska, B., Sagebiel, J., Arnott, W.P., Rogers, C.F., Kelly, K.E., Wagner, D.A., Lighty, J.S., Sarofim, A.F., Palmer, G., 2004. Phase and size distribution of Polycyclic Aromatic Hydrocarbons in diesel and gasoline vehicle emissions. Environmental Science & Technology, 38(9): 2557-2567.
王雅玢 (1994) 交通污染源大氣中多環芳香烴化合物特徵之探討。環境工程研究所碩士論文,國立成功大學。
石珮琦 (2015) 高雄地區大氣顆粒態多環芳香烴-污染來源及濃度影響因子。海洋環境及工程學系碩士論文,國立中山大學。
江涵 (2014) 高雄地區大氣懸浮微粒上多環芳香烴濃度之時空變化。海洋環境及工程學系碩士論文,國立中山大學。
米孝萱 (1998) 移動性污染源排放多環芳香烴化合物之特徵。環境工程學系研究所博士論文,國立成功大學。
李郁惠 (2005) 愛河及前鎮河水體中多環芳香烴含量分布之研究。海洋環境及工程學系研究所碩士論文,國立中山大學。
林欣儀 (2008) 多環芳香烴和微粒共同暴露對細胞毒性之研究。環境與職業衛生研究所碩士論文,國立陽明大學。
高雄市政府 (2016) 高雄市政府市政統計通報。網址:http://kcgdg.kcg.gov.tw /Page/kcg05.aspx.,擷取日期:2016年4月20日。
張文馨 (2008) 北投焚化爐附近社區空氣中PM2.5、PM10及PAHs濃度研究。環
境與職業衛生研究所碩士論文,國立陽明大學。
許慧琳 (1996) 大氣中多環芳香烴化合物之粒徑分佈及乾沉降研究。環境工程學
系研究所碩士論文,國立成功大學。
陳佩娟 (2003) 沿海地區大氣中懸浮微粒化學特性分析研究。環境工程與管理系碩士論文,朝陽科技大學。
陳健民 (2007) 環境毒物學。新文京,台北市。
鄭金娥 (2015) 多環芳香烴於恆春半島濃度、來源及海氣交換之研究。海洋環境
及工程學系博士論文,國立中山大學。
賴臆雯 (2000) 大氣塵粒中多環芳香烴粒徑分布特性之研究。原子科學系研究
所碩士論文,國立清華大學。
蘇靖貿 (2001) 季節性差異對大氣中PAHs特徵影響之研究。環境與安全工程系
碩士論文,國立雲林科技大學。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code