Responsive image
博碩士論文 etd-0725116-130859 詳細資訊
Title page for etd-0725116-130859
論文名稱
Title
永磁輔助式同步磁阻電動機之設計分析與開發
Designs and Analyses of Permanent Magnet Assisted Synchronous Reluctance Motors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-28
繳交日期
Date of Submission
2016-08-25
關鍵字
Keywords
永磁輔助式同步磁阻電動機、高效能、鐵芯導磁路徑
high performance, flux path, Permanent-Magnet-Assisted Synchronous Reluctance Motor
統計
Statistics
本論文已被瀏覽 5681 次,被下載 0
The thesis/dissertation has been browsed 5681 times, has been downloaded 0 times.
中文摘要
本文為研究適用於低成本量產製程的高效能永磁輔助式同步磁阻電動機轉子結構設計,並提出以既有感應電動機定子結構為基礎的系統化設計流程。此設計流程將由同步磁阻轉子鐵芯優化設計出發,藉由在最佳化設計的轉子磁障中適當的分配永久磁石的安置形式,完成永磁輔助式同步磁阻電動機架構。其中將探討轉子鐵芯導磁路徑的設計、磁石的使用以及量產製程所不可避免的結構調整對於電動機整體效能影響。最終完成電動機實體,並以實體量測結果與有限元素分析所得之動態特性相互驗證電動機之運轉效能。
Abstract
The purpose of this research is to provide a systematic design of a low-cost and high performance Permanent-Magnet-Assisted Synchronous Reluctance Motor (PMA-SynRM) base on the stator of an existing commercial induction motor. The motor design process started from the rotor design optimization of the synchronous reluctance motor, then the proper placement and usage of magnets, and finally the structural design of the PMA-SynRM. The effects among different flux path designs in the rotor core, the magnets, and the unavoidable structural changes for the massive production consideration were all included. Finally, the PMA-SynRM prototype was built and tested in the laboratory, and the finite element analysis results were confirmed by the experimental measurements.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 viii
表目錄 xi
符號對照表 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究重點與目標 3
第二章 同步磁阻電動機理論背景探討 5
2.1 磁阻理論 5
2.2 同步磁阻電動機轉子結構 6
2.3 同步磁阻電動機直交軸數學模型與凸極比之影響 9
2.4 同步磁阻電動機之齒槽效應 11
2.5 同步磁阻電動機簡易直交軸電感量測法 12
2.6 永磁對同步磁阻電動機之影響 17
第三章 同步磁阻電動機轉矩漣波優化 20
3.1 範例結構之機體參數及材料選擇 20
3.2 轉子結構鐵芯比例探討 21
3.3 轉子肋部結構改變對於轉矩漣波之優化 24
3.4 轉子導磁路徑分散對於電動機轉矩漣波之影響 27
3.5 轉子導磁路徑偏移對於電動機轉矩漣波之影響 31
第四章 永磁輔助式同步磁阻電動機轉子設計流程與規劃 35
4.1 磁石用量對於電動機整體效能之影響 35
4.2 永磁輔助式同步磁阻電動機效能判斷方程式 38
4.3 永磁輔助式同步磁阻電動機之較佳永磁安置位置探討 40
4.4 探討永磁輔助式同步磁阻電動機配合加工限制之結構修改 43
4.5 同步磁阻電動機轉子磁障結構對於輸出轉矩影響探討 47
4.5.1 轉子磁障分佈波形數學架構 49
4.5.2 含高次諧坡之磁障分佈波形理論架構 54
第五章 實體結構量測與驗證 60
5.1 1 hp同步磁阻電動機實體運轉特性量測 60
5.2 3 hp電動機實體運轉特性量測 65
第六章 結論與討論 70
參考文獻 72
作者自述 76
參考文獻 References
(1) I. Boldea, Reluctance Synchronous Machines and Drives, Clarendon press, Ed. U.K.: Oxford, 1996.
(2) N. Bianchi, “Synchronous reluctance and interior permanent magnet motors,” Proc. IEEE Workshop Elect. Mach. Des. Control Diag., pp. 75 - 84, Paris, Mar. 2013.
(3) EUROPA/EU law and publications/EUR-Lex/EUR – Lex - 32009R0640 – EN, http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1468778835418&uri=CELEX:32009R0640,2009/07/23。
(4) 經濟部能源局/資訊與服務/能源法規/節約能源/使用能源設備或器具容許耗用能源標準/低壓三相鼠籠型感應電動機(含安裝於特定設備之一部者)能源效率基準、效率標示及檢查方式,https://web3.moeaboe.gov.tw/ECW/populace/ Law/Content.aspx?menu_id=1038,2015/02/16。
(5) IEA/Publications/Free Publications/Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems, https://www.iea.org/publications/freepublications /publication/EE_for_ElectricSystems.pdf,2011。
(6) J. K. Kostko, “Polyphase reaction synchronous motors,” American Institute of Electrical Engineers, vol. 42, pp. 1162–1168, 1923.
(7) A. Boglietti, A. Cavagnino, M. Pastorelli, and A. Vagati, “Experimental comparison of induction and synchronous reluctance motors performance,” Proc. 2005 IEEE Industry Applications Soc. Annu. Meeting, vol. 1, pp. 474 - 479, Kowloon, Oct. 2005.
(8) T. Fukami, M. Momiyama, K. Shima, R. Hanaoka, and S. Takata, “Steady-state analysis of a dual-winding reluctance generator with a multiple-barrier rotor,” IEEE Trans. on Energy Conv., vol. 23, no. 2, pp. 492 - 498, Jun. 2008.
(9) G. Pellegrino, F. Cupertino, and C. Gerada, “Automatic design of synchronous reluctance motors focusing on barrier shape optimization,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1465 - 1474, Mar./Apr. 2015.
(10) A. Tessarolo, “Modeling and analysis of synchronous reluctance machines with circular flux barriers through conformal mapping,” IEEE Trans. Magn., vol. 51, no. 4, Apr. 2015, Art. ID 8104411.
(11) M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” Proc. IEEE IEMDC, pp. 1058 - 1065, Chicago, May, 2013.
(12) F. Cupertino, G. Pellegrino, and C. Gerada, “Design of synchronous reluctance motors with multiobjective optimization algorithms,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3617 - 3627, Nov./Dec. 2014.
(13) T. Matsuo and T.A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. on Energy Conv., vol. 9, no. 2, pp. 359 - 365, June 1994.
(14) S. J. Mun, Y. H. Cho, and J. H. Lee, “Optimum design of synchronous reluctance motors based on torque/volume using finite-element method and sequential unconstrained minimization technique,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4143 - 4146, Nov. 2008.
(15) C. T. Liu, T. Y. Luo, C. C. Hwang, and B. Y. Chang, ‘‘Field path design assessments of a high-performance small-sower synchronous-reluctance motor,’’ IEEE Trans. Magn., vol. 51, no. 11, Oct. 2015, Art. ID 8206504.
(16) A. Dziechciarz and C. Martis, ‘‘New shape of rotor flux barriers in synchronous reluctance machines based on Zhukovski curves,’’ 9th International Symposium on Advanced Topics in Electrical Engineering, pp. 221 - 224, Bucharest, May 2015.
(17) S. Yammine, C. Henaux, M. Fadel, S. Desharnais, and L. Calegari, " Synchronous reluctance machine flux barrier design based on the flux line patterns in a solid rotor," Proc. 2014 ICEM, pp. 297 - 302, Berlin, Sept. 2014.
(18) D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” IEEE Proc. B, Elect. Power Appl., vol. 140, no. 4, pp. 249 - 259, Jul. 1993.
(19) G. Dajaku and D. Gerling, “Stator slotting effect on the magnetic field distribution of salient pole synchronous permanent-magnet machines,” IEEE Trans. Magn., vol. 46, no. 9, pp. 3676 - 3683, Sept. 2010.
(20) A. Fratta, G. P. Troglia, A. Vagati, and F. Villata, “Evaluation of torque ripple in high performance synchronous reluctance machines,” Proc. 1993 IEEE Industry Applications Soc. Annu. Meeting, pp. 163 - 170, Toronto, Ont., Oct. 1993.
(21) D. Prieto, B. Dagusé, Ph. Dessante, P. Vidal, and J.-C. Vannier, "Effect of magnets on average torque and power factor of synchronous reluctance motors," Proc. 2012 ICEM, pp. 213 - 219, Marseille, Sept. 2012.
(22) J. M. Park, S. I. Kim, J. P. Hong, and J. H. Lee, “Rotor design on torque ripple reduction for a synchronous reluctance motor with concentrated winding using response surface methodology,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3479–3481, Oct. 2006.
(23) N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187–195, Jan./Feb. 2015.
(24) M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux-barrier arrangement,” IEEE Trans. Ind. Appl., vol. 40, no. 4, pp. 1076–1082, Jul./Aug. 2004.
(25) M. Cirani, S. Eriksson and J. Thunberg, "Innovative design for flux leakage reduction in IPM machines," Proc. 2012 ICEM, pp. 2671 - 2676, Marseille, Sept. 2012.
(26) P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of Electric Machinery and Drive Systems, 3rd Edition, Wiley‐IEEE Press, Hoboken, NJ, U.S.A., 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.31.240
論文開放下載的時間是 校外不公開

Your IP address is 3.141.31.240
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code