Responsive image
博碩士論文 etd-0725116-160737 詳細資訊
Title page for etd-0725116-160737
論文名稱
Title
具有指定編碼解碼器與溫度計碼解碼器的十二位元數位類比轉換器
A 12-bit Digital-to-Analog Converter with the specified code and thermometer code decoder
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-08-25
繳交日期
Date of Submission
2016-08-29
關鍵字
Keywords
高速度、高精準度、數位類比轉換器、低面積、指定編碼
digital-to-analog converter, the specified code, high precision, small area, high speed
統計
Statistics
本論文已被瀏覽 5686 次,被下載 152
The thesis/dissertation has been browsed 5686 times, has been downloaded 152 times.
中文摘要
隨著科技不斷的發展,行動通訊裝置的功能有著越來越多需求,隨著智慧型手機廣泛的使用,以及越來越多APP的需求,無論是在耗電量亦或是提高速度或是高精準度甚至是面積都是數位類比轉換器設計的趨勢。因此本論文提出一種新的解碼器架構稱為指定編碼法,透過分組與編碼兩種方式減少電流單元開關的次數進而改善效能,並採用分段式電流導向架構使其與溫度計碼做結合,在較低的六個位元採用指定編碼架構而較高的六個位元採用溫度計碼,結合了指定編碼數位類比轉換器低面積低功耗及靜態效能的優點以及溫度計碼數位類比轉換器動態效能的優點,並且相較於傳統四位元二進制加權碼數位類比轉換器加八位元溫度計碼數位類比轉換器,由於電流單元大幅的減少了192個,使得晶片面積大幅的下降,考慮各方面效能、功耗以及所使用的面積設計出一種新的數位類比轉換器。

此設計採用TSMC 90nm製程製作。此數位類比轉換器的取樣速率和解析度分別為1GS/s和12位元。功率消耗為24.3毫瓦。模擬結果顯示,所提出的編碼技術,可以擁有高精度並可以取代溫度計碼以減少晶片面積。

關鍵詞:數位類比轉換器,高速度,高精準度,低面積,指定編碼。
Abstract
With the continuous development of technology, mobile communication device has more and more demand for function, with the widespread use of smartphones and, increasingly, APP needs, whether in power saving or high speed or high precision even small area is the trend of present digital-to-analog converter circuit design. Therefore, this thesis proposes a new specify code for the decoder architecture. Grouping and Coding are two ways to reduce the switching of the current cell. It adapts a segmented current-steering architecture combining with the thermometer code. The segmented current steering architecture that comprises 6MSB’s thermometer code and 6LSB’s specified code is used, they combine the advantages of the specified code digital-to-analog converter’s small area, low-power and static specification and thermometer code digital-to-analog converter’s dynamic performance. Compare with traditional 8MSB’s thermometer code digital-to-analog converter and 4LSB’s binary-weighted digital-to-analog converter, due to the reduce of the 192 current cell, the chip area is much more small. Considering the performance, the power consumption, and the chip area, a new digital to analog converter is proposed.
The design is designed in TSMC 90nm CMOS process. The sampling rate and resolution of the DAC are 1GS/s and 12-bit, respectively. The power consumption is 24.3mW. The simulation results show that the proposed specified code DAC can achieve high precision and reduce the chip area by adapting the proposed specified code.

Key words: digital-to-analog converter, high speed, high precision, small area, the specified code.
目次 Table of Contents
論文審定書 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
Chapter 1 緒論 1
1.1 研究動機與目標 1
1.2 論文章節組織 2
Chapter 2 數位類比轉換器介紹 3
2.1 數位類比轉換器簡介 3
2.2 電流源式數位類比轉換器 4
2.2.1 二進制加權式數位類比轉換器 4
2.2.2 溫度計碼數位類比轉換器 5
2.2.3 分段式結構數位類比轉換器 8
2.3 數位類比轉換器設計考量 10
Chapter 3 指定編碼解碼器之數位類比轉換器 11
3.1 簡介 11
3.2 六位元指定編碼+六位元溫度計碼數位類比轉換器 11
3.3 六位元指定編碼數位類比轉換器 13
3.3.1 指定編碼法 16
3.3.2 指定編碼的電流單元組與檢視流程 19
3.3.3 編碼的指定方法與流程 21
3.3.4 指定編碼數位類比轉換器改良的優點 24
3.3.5 指定編碼與其他編碼的比較 27
3.4 六位元溫度計碼數位類比轉換器 28
3.5 偏壓電路 29
3.6 晶片佈局(Layout) 30
Chapter 4 模擬結果與電路比較 32
4.1 六位元指定編碼+六位元溫度計碼模擬結果 32
4.2 電路比較 36
Chapter 5 結論與未來展望 37
5.1 結論 37
5.2 未來展望 37
參考文獻 38
參考文獻 References
[1] Y. Tang, J. Briare, K. Doris, R. van Veldhoven, P. C. W. van Beek, H J. A Hegt, A. H. M. van Roermund, “A 14 bit 200 MS/s DAC With SFDR > 78 dBc, IM3 < -83 dBc and NSD < -163 dBm/Hz Across the Whole Nyquist Band Enabled by Dynamic-Mismatch Mapping, ” IEEE Journal of Solid-State Circuits, vol. 46, no. 6, pp. 1371-1381, June 2011.
[2] A. R. Bugeja, B. S. Song, P. L. Rakers and S. F. Gillig, “A 14-b 100-MS/s CMOS DAC designed for spectral performance,” IEEE Journal Solid-State Circuits, vol. 34, no. 12, pp. 1719-1732, December 1999.
[3] T. Chen and G. G. E. Gielen, “The analysis and improvement of a current-steering DACs dynamic SFDR-I: The cell-dependent delay differences, ” IEEE Transaction on Circuits Systems I: Regular Papers, vol. 53, no. 1, pp. 3-15, January 2006.
[4] C. H. Lin, Frank M. L. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 bit 2.9GS/s DAC with IM3 < -60 dBc beyond 1GHZ in 65 nm CMOS,” 2009 IEEE International Solid-State Circuits Conference, pp. 74-75, February 2009.
[5] P. Palmers and M. S. J. Steyaert, “A 10–Bit 1.6-GS/s 27-mW Current-Steering D/A Converter With 550-MHz 54-dB SFDR Bandwidth in 130-nm CMOS, ” IEEE Transaction Circuits and Systems I, Regular Papers, vol. 57, no. 11, pp. 2870-2879, November 2010.
[6] T. Chen and G. G. E. Gielen, “The analysis and improvement of a current-steering DACs dynamic SFDR-II: The output-dependent delay differences,” IEEE Transaction on Circuits Systems I: Regular Papers, vol. 54, no. 2, pp. 268-279, February 2007.
[7] W. H. Tseng, C. W. Fan, and J. T. Wu, “A 12 b 1.25GS/s DAC in 90 m CMOS with > 70 dB SFDR up to 500 MHz,” in IEEE International Solid-State Circuits Conference, pp. 192-193, 2011.
[8] D. A. Mercer, “Low-power approaches to high-speed current-steering digital-to-analog converters in 0.18-μm CMOS,” IEEE Journal Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, August 2007.
[9] C. H. Lin and K. Bult, “A 10-b 500-MSample/s CMOS DAC in 0.6-mm2 , ” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, December 1998.
[10] Y. Cong and R. L. Geiger, “Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 7, pp. 585-595, July 2000.
[11] J. Deveugele, G. Van der Plas, M. Steyaert, G. Gielen, and W. Sansen, “A gradient-error and edge-effect tolerant switching scheme for a high-accuracy DAC,” IEEE Transactions on Circuits and Systems Regular Papers, vol. 51, no. 1, pp. 191-195, January 2004.
[12] K. C. Kuo and C. W. Wu, “A Switching Sequence for Linear Gradient Error Compensation in the DAC Design,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 8, pp. 502-506, August 2011.
[13] A. R. Bugeja and B. Song, “A self-trimming 14-b 100-MS/s CMOS DAC,” IEEE Journal Solid-State Circuits, vol. 35, no. 12, pp. 1841-1852, 2000.
[14] W. H. Tseng, J. T. Wu, and Y. C. Chu, “A CMOS 8-bit 1.6-GS/s DAC with digital random return-to-zero,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, no. 1, pp. 1-5, January 2011.
[15] J. H. Chi, S. H. Chu, T. H. Tsai. “A 1.8-V 12-bit 250-MS/s 25-mW self-calibrated DAC,” in 2010 Proceedings of the ESSCIRC, pp. 222-225, September 2010.
[16] T. H. Kuo and W. T. Lin, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection,” IEEE Journal Solid-State Circuits, vol. 47, no. 2, pp. 444-453, February 2012.
[17] W. T. Lin, Hung-Yi Huang, and T. H. Kuo, “A 12b 40nm DAC Achieving SFDR > 70 dB at 1.6GS/s and IMD < - 64 dB at 2.8 GS/s with DEMDRZ Technique,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 708-717, Mar. 2014.
[18] T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, “An 80-MHz 8-bit CMOS D/A Converter,” IEEE J. Solid-State Circuits, vol. 21, no. 12, pp. 983–988, Dec. 1986.
[19] Y. Cong and R. L. Geiger, “Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 7, pp. 585-595, July 2000.
[20] Y. Cong and R. L. Geiger, “A 1.5-V 14-bit 100-MS/s self-calibrated DAC,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2051-2060, Dec. 2003.
[21] T. Chen and G. G. E. Gielen, “A 14-bit 200-MHz current steering DAC with switching-sequence post-adjustment calibration,“ IEEE Journal Solid-State Circuits, vol. 42, no. 8, pp. 1688-1698, August 2007.
[22] J. Deveugele and M. Steyaert, “RF DAC’s: Output impedance and distortion,” in Analog Circuit Design. p. 45-63, New York: Springer, 2006.
[23] G. Engel and S. Kuo and S. Rose, “A 14b 3/6GHz current-steering RF DAC in 0.18nm CMOS with 66dB ACLR at 2.9GHz,” 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 458-460, 2012.
[24] Y. G. Kwon, S. H. Lee, Y. D. Jeon and J. K. Kwon, "A 6b 1.4GS/s 11.9mW 0.11mm2 65nm CMOS DAC with a 2-D INL bounded switching scheme," SoC Design Conference (ISOCC), 2010 International, Seoul, 2010, pp. 198-200.
[25] W. T. Lin and T. H. Kuo, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 444-453, Feb 2012.
[26] R. J. Baker, “CMOS Circuit Design, Layout, and Simulation, ”3rd ed. John Wiley& Sons, Inc, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code