Responsive image
博碩士論文 etd-0725116-224534 詳細資訊
Title page for etd-0725116-224534
論文名稱
Title
晶圓切割過程之切割力與溫度分布的理論研究
Theoretical Studies of the Dicing Forces and Temperature Distribution on Wafer Dicing Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-09-08
關鍵字
Keywords
晶圓切割、溫度分布、有限差分法、切割力
dicing force, finite difference method, wafer dicing, temperature distribution
統計
Statistics
本論文已被瀏覽 5689 次,被下載 2
The thesis/dissertation has been browsed 5689 times, has been downloaded 2 times.
中文摘要
本研究使用有限差分法建立熱傳模型,計算晶圓切割過程中的熱傳問題,預測工件溫度分布情況,探討工件尺寸、進給速度、切割片速度與邊界冷卻條件對切割過程中工件的溫度分布的影響。熱傳的理論解析解,因假設工件為半無限體,所以其預測之溫度分布與數值模擬之誤差,隨厚度減少而變大。
數值模擬結果顯示當工件進給速度固定時,工件溫度與工件厚度呈現負相關,厚度2 mm以下之工件的後側材料在熱源遠離後仍維持高溫,使用切削液有助於降溫。熱輸入固定時,工件進給速度提高,工件溫度降低,工件材料的受熱影響的範圍減小。由實驗之經驗公式發現提高進給速度使切割力增大,進而增加產熱,使得工件溫度增高,而提高切割片速度則反之降低工件溫度。工件進給速度對切割力、溫度分布都有明顯的影響,為晶圓切割過程中最重要之操作參數。
Abstract
In this study, a heat transfer model is established based on the finite difference method to solve heat transfer problems and to predict the temperature distribution of workpiece during the wafer dicing process. Effects of workpiece size, feed rate, blade speed, and boundary conditions on the temperature distribution of the workpiece are investigated. Based on the workpiece as the semi-infinite body, the classical solutions for the heat transfer analysis of this process can be obtained, but the error between the predicted temperature and numerical one increases with decreasing thickness of the wafer.
Numerical results show that for a constant feed rate, the temperature of the workpiece decreases with increasing thickness of the workpiece. The material at the trailing edge of workpiece remains high temperature for the thickness less than 2 mm when the heat source moves away. The use of the cutting fluid helps to reduce the temperature. For a constant heat flux, the temperature decreases with increasing feed rate with a smaller area of high temperature. From the empirical formula of the experiments, the dicing force increases along with the feed rate. Hence, the heat source increases along with the feed rate, so that the temperature increases. However, the blade speed has the opposite effect. Consequently, the feed rate is the dominant parameter on the wafer dicing process.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 ix
符號說明 x
第一章 緒論 1
1.1 晶圓切割概述 1
1.2 文獻回顧 2
1.3 研究目的 9
1.4 論文架構 9
第二章 理論模型 10
2.1 二維模型 10
2.2 熱傳模型 11
2.3 邊界條件 12
2.4 數值方法 14
2.5 切割力模型 18
2.5.1 切屑生成分力 18
2.5.2 摩擦分力 19
第三章 結果與討論 28
3.1 熱傳模型驗證 28
3.2 工件材料對溫度分布的影響 30
3.3 工件進給速度對溫度分布的影響 31
3.4 工件厚度對溫度分布的影響 31
3.5 使用實驗參數進行溫度模擬 33
3.6 切割力模型驗證 35
第四章 結論與未來展望 63
4.1結論 63
4.2 未來展望 64
參考文獻 65
參考文獻 References
[1] Y. Kasem, and L. Feinstein, Horizontal die cracking as a yield and reliabilityproblem in integrated circuit devices. IEEE Transactions on Components, Hybrids, and Manufacturing Technology (1987) 654-661.
[2] U. Efrat, Optimizing the wafer dicing process. Electronic Manufacturing Technology Symposium, Fifteenth IEEE/CHMT International. IEEE (1993) 245-253.
[3] A. T. Cheung, Dicing advanced materials for microelectronics. Advanced Packaging Materials: Processes, Properties and Interfaces, (2005) 149-152.
[4] H. Zhou, S. Qiu, Y. Huo and N. Zhang, High-speed dicing of silicon wafers conducted using ultrathin blades. The International Journal of Advanced Manufacturing Technology (2013) 947-953.
[5] S. C. Kim, E. S. Lee, N. H. Kim and H. D. Jeong, Machining characteristics on the ultra-precision dicing of silicon wafer. The International Journal of Advanced Manufacturing Technology (2007) 662-667.
[6] S. Kalpakjian and S. R. Schmid, Manufacturing engineering and technology, fourth edition, Prentice-Hall, U.S.A. (2001)
[7] I. D. Marinescu, W. B. Rowe, B. Dimitrov and H. Ohmori, Tribology of abrasive machining processes, second edition, Elsevier, U.S.A. (2013)
[8] M. P. Groover, Principles of modern manufacturing, fourth edition, John Wiley and Sons, New York (2011)
[9] S. Malkin and N. H. Cook, The wear of grinding wheels: part 1- attritious wear. Journal of Manufacturing Science and Engineering (1971) 1120-1128.
[10] C. Rubenstein, The mechanics of grinding. International Journal of Machine Tool Design and Research (1972) 127-139.
[11] G. Werner, Influence of work material on grinding force. CIRP Annals-Manufacturing Technology (1978) 243-248.
[12] L. Li, J. Fu and J. Peklenik, A study of grinding force mathematical model. CIRP Annals-Manufacturing Technology (1980) 245-249.
[13] W. Lortz, A model of the cutting mechanism in grinding. Wear (1979) 115-128.
[14] M. Younis, M. M. Sadek, and T. El-Wardani, A new approach to development of a grinding force model. Journal of Manufacturing Science and Engineering (1987) 306-313.
[15] J. Tang, J. Du and Y. Chen, Modeling and experimental study of grinding forces in surface grinding. Journal of Materials Processing Technology (2009) 2847-2854.
[16] U. S. P. Durgumahanti, V. Singh and P. V. Rao, A new model for grinding force prediction and analysis. International Journal of Machine Tools and Manufacture (2010) 231-240.
[17] J. C. Jaeger, Moving sources of heat and the temperature at sliding contacts. Journal and Proceedings of the Royal Society of New South Wales (1942) 203-224.
[18] J. O. Outwater, M. C. Shaw, Surface temperatures in grinding. Transactions of the American Society of Mechanical Engineers (1952) 73-86.
[19] R. S. Hahn, The relation between grinding conditions and thermal damage in the workpiece. Transactions of the American Society of Mechanical Engineers (1956) 807-812.
[20] C. Guo and S. Malkin, Analysis of transient temperatures in grinding. Journal of Engineering for Industry (1995) 571-577.
[21] B. Shen, A. J. Shih and G. Xiao, A heat transfer model based on finite difference method for grinding. Journal of Manufacturing Science and Engineering (2011) 031001.
[22] X. Wang, T. Yu, X. Sun, Y. Shi and W. Wang, Study of 3D grinding temperature field based on finite difference method: considering machining parameters and energy partition. The International Journal of Advanced Manufacturing Technology (2016) 915-927.
[23] S. Malkin, Grinding technology: theory and application of machining with abrasives. Ellis Horwood, Chichester (1989)
[24] L. C. Zhang, T. Suto, H. Noguchi and T. Waida, On some fundamental problems in grinding. Computer Methods and Experimental Measurements for Surface Treatment Effects, Computational Mechanics Publications, Southampton, U.K. (1993) 275–284
[25] S. P. Kohli, C. Guo and S. Malkin, Energy partition for grinding with aluminum oxide and CBN abrasive wheels. Journal of Engineering for Industry (1995) 160-168.
[26] W. B. Rowe, Principles of modern grinding technology. Elsevier, U.K. (2009)
[27] A. S. Lavine, A simple model for convective cooling during the grinding process. Journal of Engineering for Industry (1988) 1-6.
[28] S. Kannappan, and S. Malkin, Effects of grain size and operating parameters on the mechanics of grinding." Journal of Engineering for Industry94.3 (1972) 833-842.
[29] B. Bhushaw, Introduce to tribology, John Wiley and Sons, New York (2002)
[30] T. Miwa, I. Inasaki and I. Yukawa, Blade wear and wafer chipping in dicing processes. Transactions of the Japan Society of Mechanical Engineers C (1999) 801-806.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.59.187
論文開放下載的時間是 校外不公開

Your IP address is 3.145.59.187
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code