Responsive image
博碩士論文 etd-0725117-010005 詳細資訊
Title page for etd-0725117-010005
論文名稱
Title
不同催化劑結合微波系統對生質柴油與生質酒精產能效率之研究
Study of the biodiesel and bioethanol production efficiency from different catalysts under a microwave system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
203
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-31
繳交日期
Date of Submission
2017-08-25
關鍵字
Keywords
生質酒精、生質柴油、實驗設計、離子液體、微波系統
bioethanol, biodiesel, experimental design, microwave system, ionic liquid
統計
Statistics
本論文已被瀏覽 5696 次,被下載 44
The thesis/dissertation has been browsed 5696 times, has been downloaded 44 times.
中文摘要
本研究利用微波系統以植生復育之植物(芒草及香蒲)與生質作物(痲瘋樹)作為製作生質酒精與生質柴油之原料搭配綠色離子液體來評估液態生質燃料的產率。藉由全因子實驗設計法及反應曲面法探討生質酒精不同之操作因子對纖維水解之醣化率,分析微波功率、反應時間、溶劑體積及催化劑濃度及植物種類對產醣率之影響;探討生質柴油不同之操作因子對痲瘋樹油轉酯化率,分析醇油比、反應時間、反應溫度與催化劑對產率的影響,並瞭解最佳之醣化效率及產油效率之操作條件。最後本研究將經處理纖維殘以XRD及FTIR儀器進行分析,觀察經水解後的變化,藉此輔證醣化率提升導致纖維素結構呈現破壞及減少之影響。
經由研究結果顯示,以PBD法評估芒草與香蒲纖維轉醣效能,影響先後順序為皆為微波功率> 溶劑體積> 催化劑> 反應時間。由PBD之結果,以CCD法進行芒草與香蒲原料之最佳轉醣率反應,在反應微波瓦數為300W、溶劑體積30 mL及[BSO3HMIM][HSO4]催化劑2.0g之操作條件下,皆可獲得最佳醣化率分別約為45.9(±0.25)%與60.8(±0.64) %。經過水解後之殘渣,在XRD及FTIR之分析下,隨著醣化率的提升,植物纖維結構遭到嚴重的破壞,可觀察到纖維素之晶相訊號緩緩降低,官能基的確有消失的潛勢。相較傳統在相同條件下微波系統水解約提高醣化率3.4倍(芒草)、3.32倍(香蒲),顯現微波有著更高的效益。後續以香蒲處理後之還原醣為單一碳源,以懸浮菌體方式培養Z. mobilis CCRC10808純菌株生產乙醇,發現在高溫度(50℃)及的鹼性(pH 11)環境下,初期有抑制菌株生產乙醇之能力。在麻瘋樹油轉酯化生質柴油方面,以PBD法評估主要影響產量大小之參數皆為醇油比> 催化劑> 反應時間> 反應溫度。由PBD之結果,以CCD法進不同催化劑NaNH2 與[MorMeA][Br]之最佳轉酯率,在醇油比10、反應時間7 min及催化劑1.25g之操作條件下,皆可獲得最佳轉酯率分別約為95.9(±0.50)%與75.6(±0.10) %。
Abstract
In this study, the yield of liquid biofuel was evaluated by using the Miscanthus floridulus and Typha orientalis Presl as raw materials combined with green ionic liquid for the production of bioethanol in a microwave system as well as using Jatropha curcas for production of Biodiesel. The effects of different factors on the hydrolysis rate of fiber were analyzed by using Experi mental design and Response Surface Methodology. The effects of microwave power, reaction time, solvent volume and catalyst concentration and plant species on sugar yield were discussed. To investigate the effects of different operating factors on the transesterification rate of Jatropha curcas oil, the effects of alcohol / oil ratio, reaction time, reaction temperature and catalyst on yield were analyzed, and the optimum operating conditions for the saccharification efficiency and oil production efficiency were observed and the treated fiber residues were analyzed by XRD and FTIR instruments to observe the changes after hydrolysis.
The PBD results showed that the influence order on saccharification efficiency of Miscanthus floridulus and Typha orientalis Presl was microwave power> solvent volume> catalyst> reaction time. From the results of PBD, the optimum parameter was determined by CCD. The optimum saccharification rates were about 45.9 (± 0.25)% and 60.8 (± 0.64)%, respectively, under the operating conditions of microwave wave ( 300W), solvent volume (30mL) and [BSO3HMIM] [HSO4] catalyst 2.0g. Under the same conditions, compared with the traditional heating using microwave system hydrolysis to increase the saccharification rate of 3.4 times (Miscanthus), 3.32 times (cattail), showing the microwave has a higher efficiency.
目次 Table of Contents
學術論文審定書 i
論文公開授權書 ii
誌謝 iii
中文摘要 v
英文摘要 vi
目錄 vii
圖目錄 xii
表目錄 xvi
一、前言 1
1-1 研究緣起 1
1-2 研究目的 6
二、文獻回顧 8
2-1 生質燃料之研究沿起 8
2-2 生質酒精 10
2-2-1 生質酒精之發展 10
2-2-2 國內、外生質酒精經濟效益分析 10
2-2-3 生質酒精之原料 13
2-3 木質纖維素 17
2-3-1 纖維素 18
2-3-2 半纖維素 19
2-3-3 木質素 19
2-4 木質纖維素前處理介紹 21
2-4-1 生物前處理 22
2-4-2 物理前處理 22
2-4-3 物理前處理 23
2-5 生質乙醇醱酵製程 28
2-6 生質柴油 29
2-6-1生質柴油之發展 29
2-6-2生質柴油成長趨勢 30
2-6-3生質柴油之物化性質 32
2-7 痲瘋樹油生質柴油之原料 34
2-8 生質柴油催化劑之種類…………………………………………………….36
2-8-1 酸性催化劑(Acid Catalyst)………………………………………..37
2-8-2 鹼性催化劑(Alkali Catalyst) 38
2-8-3 酵素催化劑(Enzyme catalyst) 40
2-9 離子液體 41
2-10 離子液體與兩性離子液體之應用 42
2-10-1 離子液體之應用 43
2-10-2 兩性離子液體之應用 44
2-11 微波原理 45
2-12微波系統之應用成效 48
三、研究方法與材料 50
3-1 研究方法 50
3-2 生質酒精及生質柴油製程材料與設備 52
3-3 實驗設計法 52
3-3-1 全因子實驗設計法 53
3-3-2反應曲面法 54
3-4 生質酒精製程 55
3-4-1實驗材料與藥品 55
3-4-2 原料來源及前處理 58
3-4-3 木質纖維素成分分析 58
3-4-4 還原醣DNS分析 59
3-4-5 醣類物種分析 60
3-4-6 非揮發性有機碳 (Total Organic Carbon,TOC) 61
3-4-7 產醣率計算 62
3-4-8 殘渣結構分析 62
3-4-9 表面結構分析 62
3-4-10 晶相鑑定 63
3-4-11 官能基分析 63
3-4-12 乙醇菌株來源 63
3-4-13 菌株培養基 64
3-4-14 批次產醇試驗之備製 65
3-4-15 乙醇之分析方法 65
3-4-16 菌量之測定方法 66
3-5 生質柴油製程 67
3-5-1 實驗材料與藥品 67
3-5-2 酸價及皂化價測定 68
3-5-3 催化劑[MorMeA][Br]製備 70
3-5-4 微波加熱製備生質柴油 71
3-5-5 產率分析 72
四、結果與討論 74
4-1生質酒精原料木質纖維素組成分析 74
4-2添加[BSO3HMIM][HSO4]催化劑,對芒草產醣率之影響 76
4-2-1.以PBD探討[BSO3HMIM][HSO4]對芒草產醣率之影響 76
4-2-2 [BSO3HMIM][HSO4]在不同反應條件下對芒草產醣率之最適應用 80
4-2-3以CCD探討[BSO3HMIM][HSO4]對芒草轉醣效能之最佳潛勢 87
4-2-4 [[BSO3HMIM][HSO4]對芒草轉醣效能之預測效用水準及驗證 90
4-2-5 [BSO3HMIM][HSO4]對芒草纖維素轉醣之反應曲面 91
4-2-6 以TOC進行芒草轉醣之總有機碳測定 94
4-2-7 以HPLC進行芒草轉醣之醣類物種測定 95
4-2-8 以X光粉末繞射儀進行芒草纖維晶相鑑定 96
4-2-9 以FTIR進行芒草纖維官能基分析 97
4-3添加[BSO3HMIM][HSO4]催化劑,對香蒲產醣率之影響 98
4-3-1 PBD探討[BSO3HMIM][HSO4]對香蒲產醣率之影響 98
4-3-2 [BSO3HMIM][HSO4]在不同反應條件下對香蒲產醣率之最適應 102
4-3-3 以CCD探討[BSO3HMIM][HSO4]對香蒲轉醣效能之最佳潛勢 109
4-3-4 [BSO3HMIM][HSO4]對香蒲轉醣效能之預測效用水準及驗證 112
4-3-5 [BSO3HMIM][HSO4]對香蒲纖維素轉醣之反應曲面 113
4-3-6 以TOC進行香蒲轉醣之總有機碳測定 116
4-3-7 以HPLC進行香蒲轉醣之醣類物種測定 117
4-3-8以X光粉末繞射儀進行香蒲纖維晶相鑑定 118
4-3-9以FTIR進行香蒲纖維官能基分析 119
4-4 以傳統及新型方式對2種植物產醣率之比較及回收與成本效益分析 120
4-4-1以H2SO4及[BSO3HMIM][HSO4]對2種植物產醣率之比較 120
4-4-2比較傳統水浴及微波加熱方式對2種植物產醣率之評估 121
4-4-3離子液體回收再利用實驗 122
4-4-4木質纖維素醣化成本分析 124
4-5 乙醇生菌株Z. mobilis之批次試驗 125
4-5-1不同培養溫度對Z. mobilis生產乙醇之影響 125
4-5-2不同初始pH值對Z. mobilis生產乙醇之影響 127
4-6 生質柴油 129
4-7 以NaNH2催化劑探討不同參數對痲瘋樹油生質柴油產率之影響 129
4-7-1以PBD探討NaNH2催化劑對生質柴油產率之影響 129
4-7-2 NaNH2在不同反應條件下對痲瘋樹油轉酯化之最適應用 133
4-7-3以CCD探討NaNH2催化劑對痲瘋樹油轉酯化效能之最佳潛勢 140
4-7-4 NaNH2對痲瘋樹油轉酯化效能之預測效用水準及驗證 143
4-7-5 NaNH2催化劑對痲瘋樹油轉酯化之反應曲面 144
4-8以[MorMeA][Br]催化劑探討對痲瘋樹油生質柴油產率之影響 147
4-8-1以PBD探討[MorMeA][Br]催化劑對生質柴油產率之影響 147
4-8-2 [MorMeA][Br]在不同反應條件下對痲瘋樹油轉酯化之最適應用 151
4-8-3以CCD探討[MorMeA][Br]對痲瘋樹油轉酯化效能之最佳潛勢 158
4-8-4 [MorMeA][Br]對痲瘋樹油轉酯化效能之預測效用水準及驗證 161
4-8-5 [MorMeA][Br]對痲瘋樹油轉酯化之反應曲面 162
4-8-6 比較傳統水浴及微波加熱方式對生質柴油產率之評估 165
4-8-7 離子液體回收再利用實驗 166
4-8-8 生質柴油生產成本分析 168
五、結論與建議 169
5-1結論 169
5-2建議 171
參考文獻 172


圖目錄
圖1-1 2008~2020年全球生質燃料產量歷史趨勢與推估 1
圖1-2 全球生質燃料產量趨勢 2
圖2-1木質纖維素原料之組成 17
圖2-2 纖維素之結構圖 18
圖2-3半纖維素之主要醣組成 19
圖2-4 木質素之結構 20
圖2-5 木質纖維素經前處理後之示意圖 21
圖2-6 常見的離子液體陰陽離子 25
圖2-7 酸催化轉酯化反應機制 37
圖2-8 鹼催化轉酯化反應機制 39
圖2-9 偶極轉動與離子傳導示意圖 46
圖2-10 傳統與微波加熱溫度分布圖 48
圖3-1 研究架構流程 51
圖3-2 微波設備構造圖 53
圖3-3 還原醣含量標準檢量線 60
圖3-4 HPLC-ELSD之醣類分析圖譜 61
圖3-5 乙醇檢量線 66
圖3-6 Z. mobilis之菌量檢量線 66
圖3-7 微波加熱製備生質柴油步驟 71
圖3-8 氣相層析儀升溫程式示意圖 73
圖4-1 芒草及香蒲木質纖維素成分比例圖 75
圖4-2芒草在不同操作試程之醣化率(1-8) 79
圖4-3芒草在不同操作試程之醣化率(9-16) 79
圖4-4芒草醣化率之最佳操作因子之效用柏拉圖 83
圖4-5芒草醣化率之最佳操作因子之常態機率圖 83
圖4-6芒草纖維醣化率之交互作用分析圖 85
圖4-7芒草纖維醣化率之最佳濃度預測立方圖 85
圖4-8以[[BSO3HMIM][HSO4]]為酸洗劑之殘差常態分布圖 86
圖4-9以[[BSO3HMIM][HSO4]]為酸洗劑之殘差散佈圖 86
圖4-10芒草在不同操作試程之醣化率(1-10) 89
圖4-11芒草在不同操作試程之醣化率(11-20) 89
圖4-12芒草纖維素轉醣操作因子之預測效用水準分析圖 90
圖4-13微波瓦數及溶劑體積影響芒草醣化之反應曲面圖 91
圖4-14微波瓦數及催化劑影響芒草醣化之反應曲面圖 92
圖4-15催化劑及溶劑體積影響芒草醣化之反應曲面圖 93
圖4-16 [BSO3HMIM][HSO4]對芒草在不同操作試程之TOC濃度之變化 94
圖4-17 [BSO3HMIM][HSO4]對芒草在不同操作試程之醣類物種測定 95
圖4-18 經微波水解前後芒草之XRD圖譜 96
圖4-19 經微波水解前後芒草之FTIR圖譜 97
圖4-20 香蒲在不同操作試程之醣化率(1-8) 101
圖4-21 香蒲在不同操作試程之醣化率(9-16) 101
圖4-22 香蒲醣化率之最佳操作因子之效用柏拉圖 105
圖4-23 香蒲醣化率之最佳操作因子之常態機率圖 .105
圖4-24 香蒲纖維醣化率之交互作用分析圖 .107
圖4-25 香蒲纖維醣化率之最佳濃度預測立方圖 .107
圖4-26 以[BSO3HMIM][HSO4]之殘差常態分布圖 .108
圖4-27 以[BSO3HMIM][HSO4]之殘差常態分布圖 108
圖4-28香蒲在不同操作試程之醣化率(1-10) 111
圖4-29 香蒲在不同操作試程之醣化率(11-20) 111
圖4-30 香蒲纖維素轉醣操作因子之預測效用水準分析圖 112
圖4-31 微波瓦數及溶劑體積影響香蒲醣化之反應曲面圖 113
圖4-32 微波瓦數及催化劑克重數影響香蒲醣化之反應曲面圖 114
圖4-33 催化劑及溶劑體積數影響香蒲醣化之反應曲面圖 115
圖4-34 香蒲在不同操作試程之TOC濃度之變化 116
圖4-35 香蒲在不同操作試程之醣類物種測定 117
圖4-36 經微波水解前後香蒲之XRD分析圖 118
圖4-37經微波水解前後香蒲之FTIR圖譜 119
圖4-38 芒草及香蒲在不同催化劑下之醣類濃度測定 120
圖4-39 傳統水浴及微波加熱方式對木質纖維素產醣率 121
圖4-40 [BSO3HMIM][HSO4]回收率 123
圖4-41 [BSO3HMIM][HSO4]回收後對芒草纖維弱化之再利用率 123
圖4-42 [BSO3HMIM][HSO4]回收後對香蒲纖維弱化之再利用率 123
圖4-43 不同培養溫度對懸浮Z. mobilis生產酒精之情形 126
圖4-44 不同初始pH對懸浮Z. mobilis生產乙醇之情形 128
圖4-45 NaNH2對痲瘋樹油在不同操作試程之生質柴油產率(1-8) 132
圖4-46 NaNH2對痲瘋樹油在不同操作試程之生質柴油產率(9-16) 132
圖4-47 NaNH2對痲瘋樹油轉酯化之最佳操作因子之效用柏拉圖 132
圖4-48 NaNH2對痲瘋樹油轉酯化之最佳操作因子之常態機率圖 136
圖4-49 NaNH2對痲瘋樹油轉酯化生質柴油產率之交互作用分析圖 138
圖4-50 NaNH2對痲瘋樹油轉酯化生質柴油之最佳濃度預測立方圖 138
圖4-51以NaNH2轉酯化之殘差常態分布圖 139
圖4-52 以NaNH2轉酯化之殘差散佈圖 139
圖4-53 NaNH2催化劑對痲瘋樹油在不同操作試程之轉酯化(1-10) 142
圖4-54 NaNH2催化劑對痲瘋樹油在不同操作試程之轉酯化(11-20) 142
圖4-55 NaNH2對痲瘋樹油轉酯化操作因子之預測效用水準分析圖 143
圖4-56 醇油比及反應時間影響NaNH2痲瘋樹油轉酯化之反應曲面圖 144
圖4-57 醇油比及催化劑影響NaNH2瘋樹油轉酯化之反應曲面圖 145
圖4-58 反應時間及催化劑影響NaNH2痲瘋樹油轉酯化之反應曲面圖 146
圖4-59[MorMeA][Br]對痲瘋樹油在不同操作試程之轉酯率(1-8) 150
圖4-60[MorMeA][Br]對痲瘋樹油在不同操作試程之轉酯率(9-16) 150
圖4-61[MorMeA][Br]對痲瘋樹油轉酯化之最佳操作因子之效用柏拉圖 154
圖4-62 [MorMeA][Br]對痲瘋樹油轉酯化之最佳操作因子之常態機率圖 154
圖4-63 [MorMeA][Br]對痲瘋樹油轉酯化之交互作用分析圖 156
圖4-64 [MorMeA][Br]對痲瘋樹油轉酯化之最佳濃度預測立方圖 156
圖4-65以[MorMeA][Br]為催化劑之殘差常態分布圖 157
圖4-66 以[MorMeA][Br]為催化劑之殘差散佈圖 157
圖4-67 [MorMeA][Br]對痲瘋樹油在不同操作試程之轉酯化(1-10) 160
圖4-68 [MorMeA][Br]對痲瘋樹油在不同操作試程之轉酯化(11-20) 160
圖4-69 痲瘋樹油轉酯化操作因子之預測效用水準分析圖 161
圖4-70 醇油比及反應時間影響痲瘋樹油轉酯化之反應曲面圖 162
圖4-71 醇油比及催化劑影響痲瘋樹油轉酯化之反應曲面圖 163
圖4-72 反應時間及催化劑影響痲瘋樹油轉酯化之反應曲面圖 164
圖4-73 傳統水浴及微波加熱方式對木質纖維素產醣率 164
圖4-74 [MorMeA][Br]回收率 167
圖4-75 MorMeA][Br]回收後對痲瘋樹油之再利用率 167



表目錄
表2-1 我國生質能源發展目標現況及規劃 9
表2-2 各國推動生質燃料之發展目標 12
表2-3 國外生質酒精生產成本 13
表2-4 生質酒精之種類及來源 14
表2-5 石化燃料與生質酒精之優缺點比較 16
表2-6.生物質中木質纖維素之組成 18
表2-7 不同離子液體在不同情況下對纖維素之溶解度 26
表2-8 不同離子液體在不同溫度對於木質素之溶解度 27
表2-9 不同離子液體對於木質纖維素之溶解效果 27
表2-10 乙醇生產菌株之相關研究 28
表2-11 歐盟生質柴油成長統計表 31
表2-12 痲瘋樹油與臺灣生質柴油標準值比較 35
表2-13 植物原油價格與生質柴油價格比較 35
表2-14 催化劑種類優缺點比較表 36
表2-15 逐一因素法 41
表2-16部分溶劑在600W微波場下之加熱效益 47
表3-1 The Plackette-Burman design for screening independent variables. 53
表3-2 Levels of the variables of CCD 54
表3-3本實驗所使用之料源、藥品及耗材之產品來源及用途 55
表3-4 醱酵產醇菌株之培養成分 64
表3-5 LB液態培養液 64
表3-6 本實驗所使用之料源、藥品及耗材之產品來源及用途 67
表3-7 離子液體結構式 70
表3-8 氣相層析儀(GC-FID)分析條件 72
表4-1 原料作物化學成分組成分析 75
表4-2 相關研究原料組成分析 75
表4-3 芒草24全因子實驗設計操作試程對應之醣化率 77
表4-4芒草醣化率的操作因子變異數分析表 80
表4-5芒草醣化率之效用估計表 82
表4-6 以芒草為原料之反應曲面法實驗設計對應最佳醣化率 88
表4-7 香蒲24全因子實驗設計操作試程對應之醣化率 99
表4-8香蒲醣化率的操作因子變異數分析表 102
表4-9香蒲醣化率之效用估計表 104
表4-10以香蒲為原料之反應曲面法實驗設計對應最佳醣化率 110
表4-11 [BSO3HMIM][HSO4]回收率及再利用萃取率 122
表4-12傳統與微波加熱之能源成本差異比較 124
表4-13痲瘋樹油品之性質 129
表4-14 NaNH2 24全因子實驗設計操作試程對應之轉酯率 131
表4-15 NaNH2對痲瘋樹油轉酯化的操作因子變異數分析表 133
表4-16 [MorMeA][Br]對痲瘋樹油轉酯化的操作因子變異數分析表 135
表4-17 以NaNH2催化劑之反應曲面法實驗設計對應最佳轉酯率 141
表4-18 [MorMeA][Br] 24全因子實驗設計操作試程對應之生質柴油產率 148
表4-19 MorMeA][Br]對痲瘋樹油轉酯化的操作因子變異數分析表 151
表4-20 [MorMeA][Br]對痲瘋樹油轉酯化之效用估計表 153
表4-21[MorMeA][Br]催化劑之反應曲面法實驗設計對應最佳轉酯率 159
表4-22[BSO3HMIM][HSO4]回收率及再利用萃取率 166
表4-23傳統與微波加熱之能源成本差異比較 168
參考文獻 References
Agarwal, A.K., Das, L.M., 2001. Biodiesel development and characterization for use as a fuel in compression ignition engines. Journal of Engineering for Gas Turbines and Power 123 , pp. 440 – 447
Agarwal, M., Chauhan, G., Chaurasia, S.P., Singh, K., 2012. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers 43 89–94.
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B., 2011. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29, pp.675–685.
Al-Widyan, M.I., Tashtoush, G., Abu-Qudais, M., 2002. Utilization of Ethyl Ester of Waste Vegetable Oils as Fuel in Diesel Engines. Fuel Processing Technology 76, pp. 91 – 103.
Amish, P., Vyasa, N., Subrahmanyama, Patel, P.A., 2009. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88, 625–628.
Amon, P.J., Agrawal, A., Shelley, L.M., Opperman, C.B., Enright, P.M., Clemmer, D.N., Slusser, T., Lach, J., Sobolewski, T., Gruner, E., Entingh, C.A., 2009. Development of wetland constructed for the treatment of groundwater contaminated by chlorinated ethenes. Ecological Engineering, 30(1), pp. 51–66.
Balat, M., 2011. Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conversion and Management 52, 1479–1492.
Balat, M., 2011. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52, pp.858–875.
Balat, M., Balat, H., Oz, C., 2010. Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, pp. 551–573.
Beery, K.E., Ladisch, M.R., 2001. Chemistry and properties of starch based desiccants. Enzyme and Microbial Technology, 28, pp. 573–581.
Behera, S., Arora, R., Nandhagopal, N., Kumar, S., 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, pp. 91–106.
Binnemans, K. 2005. Ionic Liquid Crystals. Chemical Reviews, 105, 4148-4204.
Carpio, R. A., King, L.A., Kibler, F. C., Fannin, A.A., 1979. Densities of AlCl, -Rich, Molten AlCl, -LiCl Mixtures. Journal of Chemical and Engineering Data 24, 22-24.
Castañón-Rodríguez, J.F., Torrestiana-Sánchez, B., Montero-Lagunes, M., Portilla-Arias, J., Ramírez de León, J.A., Aguilar-Uscanga, M.G., 2013. Using high pressure processing (HPP) to pretreat sugarcane bagasse. Carbohydrate Polymers, 98, pp. 1018–1024.
Chang, V.S., Holtzapple, M.T., 2000. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 84, pp.5–37.
Chen, W.H., Tu, Y.J., Sheen, H.K., 2011. Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88, pp. 2726–2734.
Cheng, J., Su, H., Zhou, J., Song, W., Cen, K., 2011. Microwave-assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photo-fermentation. International Journal of Hydrogen Energy, 36, pp. 2093–2101.
Cosgrove, D.J., 1998. Cell Walls: Structures, Biogenesis, and Expansion. In: Plant Physiology. In L. Taiz and E. Zeiger, eds. Sunderland: Sinauer Associates Inc.
Cull, S. G., Holbrey, J.D., Vargas-Mora, V., Seddon, K.R., Lye, G.J., 2000. Biotechnology and Bioengineering 69, 227-233.
Davis, J.H., 2004. Chemistry Letters 33, 1072-1077.
Davis, J.H., Wierzbicki, A., 2000. In Proceedings of the symposium on advances in solvent selection and substitution for extraction; American Institute of Chemical Engineers: New York.
Demirbas, A., 2002. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 44, 2093  2109.
Demirbas, A., 2005. Biodiesel Production from Vegetable Oils via Catalytic and Non-catalystic Supercritical Methanol Transesterification Methods. Prog. Energy Combust. Sci. 31, 466-487.
Demirbas, A., 2007. Recent developments in biodiesel fuels. International Journal of Green Energy 4, 15–26.
Demirbas. A., 2009. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Convers Manage 50, pp.923 – 927.
Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M., 2004. Energy optimization of alkali-catalyzed transesterification of brassica carinata oil for biodiesel production. Fuels 18. 77  83.
Doyle, M., Choi, S.K., Proulx, G., 2000. Journal of the Electrochemical Society 147, 34-37.
Dupont, J., Souza, de R.F., Suarez, P.A.Z., 2002. Chemical Reviews 102, 3667-3691.
Earle, M.J., Seddon, K.R., 2000. Ionic liquids. Green solvents for the future. Pure and Applied Chemistry 72, 1391 – 1398.
Energy Technology Perspectives, 2015 edition, IEA.

European Biodiesel Board , 2012. The EU biodiesel industry production by country statistics.
Fukuda, H., Kondo, A., Noda, H., 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 92, 405  416.
Fung, Y.S., Zhou, R.Q., 1999. Journal of Power Sources 82, 891-895.
Gale, R.J., Gilbert, B., Osteryoung, R.A., 1978. Inorg. Chem17, 2728.
Galeno, G., Minutillo, M., Perna, A., 2011. From waste to electricity through integrated plasmagaification / fuel cell (IPGFC) system. International Journal of Hydrogen Energy 36, pp.1692 – 1701.
Gerhard Knothe et al., 2005. Fuel Property of Biodiesel—Cetane Number. The Biodiesel Handbook AOCS Press.
Giovanni, V.D.G., Laurens, R., 2008. The jatropha energy system:an integrated approach to decentralized and sustainable energy production at the village level. Ingegneria Senza Frontiere.
Gruen, D.M., Mcbth, R.L., 1963. Pure Appl. Chem. 6, 23.
Gubitz, G.M., Mittelbach, M., Trabi, M., 1999. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource Technol. 67, 73–82.
Gubitz, G.M., Mittelbach, M., Trabi, M., 1999. Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresource Technol. 67, 73–82.
Guo, F., Fang, Z., Xu, C.C., Jr, S.R.L, 2012. Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 38, pp. 672–690.
Guo, F., Fang, Z., Xu, C.C., Jr, S.R.L, 2012. Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 38, pp. 672–690.
Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G.H., Gholami, M., Ardjmand, M., 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, pp. 77–93.
Hideno, A., Inoue, H., Tsukahara, K., Fujimoto, S., Minowa, T., Inoue, S., Endo, T., Sawayama, S., 2009. Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology, 100, pp. 2706–2711.
IEA (International Energy Agency).2011. Technology Roadmap -biofuels for Transport. OECD/IEA. Paris. France.
IEA (International Energy Agency).2013. World energy outlook 2013. OECD/IEA. Paris. France.
IEA. 2015. The Role of Bioenergy in IEA’s Medium-Term Renewable Energy Market Report 2015, IEA Bioenergy Conference –Berlin 27-28 October 2015.
International Energy Agency (IEA), 2015, Energy Technology Perspectives.
Jain, N., Kumar, A., Chauhan, S., Chauhan, S.M.S., 2005. Tetrahedron 61, 1015-1060.
Ju, Y.H., Huynh, L.H., Kasim, N.S., Guo, T.J., Wang, J.,H., Fazary, A.E., 2011. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydrate Polymers, 83, pp. 591–599.
Kafuku, G., Mbarawa, M., 2010. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 89, 2556–2560.
Kaushik, N., Kumar, K.,Kumar, S.,Kaushik, N., Roy, S., 2007. Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass and Bioenergy 31, pp. 497–502.
Kim, H., Choi, B., 2010. The effect of biodiesel and bioethanol blended diesel fuel on nanoparticles and exhaust emissions from CRDI diesel engine. Renewable Energy, 35, pp. 157–163.
Koel, M., 2005. Critical Reviews in Analytical Chemistry 35, 177-192.
Leung, D.Y.C., Guo, Y., 2006 Transesterification of neat and used frying oil: optimization for biodiesel production. Fuel Processing Technology 87, 883 – 890.
Leung, D.Y.C., Wu, X., Leung, M.K.H., 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87, 1083–1095.
Li, X., Kim, T.H., Nghiem, P., 2010. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF). Bioresource Technology, 101, pp.5910–5916.
Liang, J.H., Ren, X.Q., Wang, J.T., Jinag, M., Li, Z.J., 2010. Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts. J Fuel Chem Technol 38, 275-280.
Liang, X., Gao, S., Wu, H., Yang, J., 2009. Highly efficient procedure for the synthesis of biodiesel from soybean oil. Fuel Processing Technology 90, 701–704.
Liang, X., Gong, G., Wu, H., Yang, J., 2009. Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. Fuel 88, 613  616.
Lim, S., Teong, L.K., 2010. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview. Renewable and Sustainable Energy Reviews 14, pp. 938–954.
Limayem, A., Ricke, S.C., 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38, pp. 449–467.
Linoj Ku Mar, N.V., Dhavala, P., Goswa Mi, A., Maithel, S., 2006. Liquid biofuels in Asis:resources and technologies. Asian Biotechnol Develop Rew, 8, pp.31– 49
Liu, J.F., Jonsson, J.A., Jiang, G.B., 2005. Trac-Trends in Analytical Chemistry 24, 20-27.
Liu, X., He, H., Wang, Y., Zhu, S., Piao, X., 2008. Transesterification of soybean oil to biodiesel using CaO as a solid basecatalyst. Fuel 87, 216–221.
Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A.T., Prausnitz, J.M., 2013. Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresource Technology 135, pp. 23–29.
Lloyd, T.A., Wyman, C.E., 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol, 96, pp.1967–1977.
Ma, F., Hanna, M.A., 1999. Biodiesel production: a review, BioresourceTechnology 70, pp.1 – 15.
Madhu, A., Garima, C.S.P. Chaurasia, K.S., 2012. Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers 43, pp.89 – 94.
Mamantov, G., Chen, G.S., Xiao, H., Yang, Y., 1995. and Hondrogiannis, E. J. Electrochem. Soc. 142, 1758.
Maqbool, F., Wang, Z., Xuc, Y., Zhao, J., Gao, D., Zhao, Y.G. Bhatti, Z.A., Xing, B., 2013. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium. Journal of Hazardous Materials, pp. 237– 238, 262– 269.
Martinez-Herrera, J., Siddhuraju, P., Francis, G., Davila-Ortiz, G., Becker, K., 2006. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem. 96, 80–89.
Michalet, S., Rohr, J., Warshan, D., Bardon, C., Roggy, J.C., Domenach, A.M., Czarnes, S., Pommier, T., Combourieu, B., Guillaumaud, N., Bellvert, F., Comte, G., Poly, F., 2013. Phytochemical analysis of mature tree root exudates in situ and their role in shaping soil microbial communities in relation to tree N-acquisition strategy. Plant Physiology and Biochemistry, 72, pp. 169-177.
Moretti, M.M.d.S, Bocchini-Martins, D.A., Nunes, C.d.C.C, Villena, M.A., Perrone, O.M., Silva, R.d., Boscolo, M., Gomes, E., 2014. Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis. Applied Energy, 122, pp. 189–195
Mulinari, D.R., Voorwald, H.J.C., Cioffi, M.O.H., Silva, M.L.C.P.d., Cruz, T.G.d., Saron, C., 2009. Sugarcane bagasse cellulose/HDPE composites obtained by extrusion. Composites Science and Technology 69, pp. 214–219.
Murugesan, A., Umarani, C., Chinnusamy, T.R., Krishnan, M., Subramanian, R., Neduzchezhain, N., 2009. Production and analysis of bio-diesel from non-edible oils – a review. Renewable and Sustainable Energy Reviews 13, pp. 825 – 834
Nardi, J.C., Hussey, C.L., King, L.A., 1978. U, S. 4,122,245.
Ohno, H., 2005. Electrochemical Aspects of Ionic Liquids; John Wiley & Sons: New Jersey.
Olivier, H., 1999. Journal of Molecular Catalysis a-Chemical 146, 285-289.
Pandey, V.C., Singh, K., Singh, J.S., Kumar, A., Singh, B., Singh, R.P., 2012. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy 16, pp.2870 – 2883.
Pang, F., Xue, S., Yu, S., Zhang, C., Li, B., Kang, Y., 2013. Effects of combination of steam explosion and microwave irradiation (SE–MI) pretreatment on enzymatic hydrolysis, sugar yields and structural properties of corn stover. Industrial Crops and Products, 42, pp. 402–408.
Papageorgiou, N., Athanassov, Y., Armand, M., Bonhote, P., Pettersson, H., Azam, A., Gratzel, M., 1996. Journal of the Electrochemical Society 143, 3099-3108.
Patil, P., Deng, S., Rhodes, I., Lammers, P.J., 2010. Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel 89, 360  364.
Peng, B.X., Shu, Q., Wang, J.F., Wang, G.R., Wang, D.Z., Han, M.H., 2008. Biodiesel production from waste oil feedstocks by solid acid catalysis. Process Safety and Environmental Protection 86, pp.441 – 447.
Phillips, J., Osteryoung, R.A.J., 1977. Electrochem. Soc. 124, 1465.
Raimondi, F., Scherer, G.G., Kotz, R., Wokaun, A., 2005. Angewandte Chemie-International Edition 44, 2190-2209.
Refaat, A.A., El Sheltawy, S.T., 2008a. Time Factor in Microwave-enhanced Biodiesel Production. WSEAS Transactions on Environment and Development 4, 279  288.
Refaat, A.A., Sheltawy, E1, S.T., Sadek, K.U., 2008b. Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. International journal of Environmental Science and Technology 5, 315  322.
REN21, 2015. RENEWABLES 2015 GLOBAL STATUS REPORT
RFA, 2010. Ethanol industry outlook: climate of opportunity.
Rogers, R.D., Seddon, K.R., 2002. Ionic Liquids: Applications for Green Chemistry; American Chemical Society: Washington, DC.
Ruppert, L., Lin, Z.Q., Dixon, R.P., Johnson, K.A., 2013. Assessment of solid phase microfiber extraction fibers for the monitoring of volatile organoarsinicals emitted from a plant–soil system. Journal of Hazardous Materials, 262, pp. 1230– 1236.
Saifuddin, N., Chua, K.H., 2004. Production of Ethyl Ester (Biodiesel) from used Frying Oil: Optimization of Transesterification Process using Microwave Irradiation Malaysian Journal of Chemistry 6, 1077 – 1082.
Sasmal, S., Goud, V.V., Mohanty, K., 2012. Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass and Bioenergy, 45, pp. 212–220.
Schmook, B., Seralta-Peraza, L., Ku Vera, J., 1997. Jatropha curcas: distribution and uses in the Yucatan Peninsula. In: Proceedings of the First International Symposium on Biofuels and Industrial Products from Jatropha curcas and Other Tropical Oil Seed Plants, Managua, Nicaragua. performance and emission. Biomass and bioenergy 20, 317-325.
Schumacher, L.G., Borglet, S.C., Fosseen, D., Goetz, W., Hires, W.G., 1996. Heavy-Duty Engine Exhaust Emission Test Using Methyl Ester Soybean Oil/Diesel Fuel Blends. Bioresource Technology 57, pp. 31 – 36.
Shakinaz, A.E.S., Ahmed, A.R., Shakinaz, T.E.S., 2010. Production of biodiesel using the microwave technique. Journal of Advanced Research 1, pp.309– 314.
Sharma, Y.C., Singh, B., 2008. Development of biodiesel from karanja, a tree found in rural India. Fuel 87, 1740  1742.
Sharma, Y.C., Singh, B., 2009. Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews 19, 1646 – 1651.
Shi, J., Sharma-Shivappa, R.R., Chinn, M., Howell, N., 2009. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33, pp.88–96.
SHORT-TERM ENERGY OUTLOOK (STEO), Febaruary, 2016, EIA.
Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G., 2007. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catalysis Communications 8, 2159  2165.
Singh, P., Suman, A., Tiwari, P., Arya, N., Gaur, A., Shrivastava, A.K., 2008. Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World Journal of Microbiology and Biotechnology, 24, pp.667–673
Stafford, G.R.J., 1994. Electrochem. Soc. 141, 945.
Suarez, P.A.Z., Dullius, J.E.L., Einloft, S., DeSouza, R.F., Dupont, J., 1996. Polyhedron 15, 1217-1219.
Sugimura, R., Qiao, K., Tomida, D., Yokoyama, C., 2007. Immobilization of acidic ionic liquids by copolymerization with styrene and their catalytic use for acetal formation. Catalysis Communications 8, 770–772.
Sun, I.W., Edwards, A.G., Mamantov, G.J., 1993. Electrochem. Soc. 140, 2733.
Taufiq-Yap, Y.H., Lee, H.V., Yunus, R., Juan, J.C., 2011. Transesterification of non-edible Jatropha curcas oil to biodiesel using binary Ca–Mg mixed oxide catalyst: Effect of stoichiometric composition. Chemical Engineering Journal 178, pp.342–347
Technology Roadmap - Carbon Capture and Storage, 2013, IEA.
Tiwari, A.K., Kumar, A., Raheman, H., 2007. Biodiesel production from jatropha oil(Jatropha curcas) with high free fatty acids: an optimized process. Biomass and Bioenergy 31, 569 – 575.
Turner, P., Mamo, G., Karlsson, E.N., 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microbial Cell Factories, 6, pp. 1–23.
University of Idaho (Department of Biological and Agricultural Engineering, 1996. Biodegradability of Biodiesel in the Aquatic Environment. Development of Rapeseed Biodiesel for Use in High-speed Diesel Engines. Progress Report, pp.96 – 116.
Vakkilainen, E., K. Kuparinen, and J. Heinimö.2013. Large industrial users of energy biomass. IEA Bioenergy Task 40. Paris.
Viesturs, U., Zarina, D., Strikauska, S. Berzins, A., 2004. Utilisation of food and woodworking production byproducts by composting. Bioautomation, 1, pp. 83–98.
Vyas, A.P., Subrahmanyam, N., Patel, P.A., 2009. Production of biodiesel through esterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88, pp. 625–628.
Wang, X.J., Li, H.Q., Cao, Y., Tang, Q., 2011. Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Bioresour Technol, 102, pp. 7959–7965.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S., 2006. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of American Oil Chemist’s Society 252, 107 – 112.
Wasserscheid, P., Welton, T., 2003. Ionic Liquid in Synthesis; Wiley-VCH: Weinheim,
Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y., Shimada, Y., 2007. Enzymatic Production of Fatty Acid Methyl Esters by Hydrolysis of Acid Oil Followed by Esterification. Journal of the American Oil Chemists Society 84, pp.1015 – 1021.
Welton, T., 1999. Room-temperature ionic liquids, solvents for synthesis and catalysis. chemical reviews 99, 2071  2083.
Welton, T., 2004. Coordination Chemistry Reviews 248, 2459-2477.
Wilkes, J. S., Levisky, J.A., Wilson, R.A., Hussey, C.L., 1982. Inorg. Chem., 21, 1263.
Wilkes, J.S., 2002. A short history of ionic liquids – from molten salts to neoteric solvents. Green Chemistry 4, 73  80.
Wilkes, J.S., Zaworotko, M.J.J., 1992. Chem. Soc. Chem. Commun., 965.
Williams, K.C., 2006. Subcritical water and chemical pretreatments of cotton stalk for the production of ethanol. USA, North Carolina State University, Raleigh, NC, Master's thesis.
Wyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, pp.1959–1966.
Yang, Z., Zhang, K.P., Huang, Y., Wang, Z., 2010. Both hydrolytic and transesterification activities of Penicillium expansum lipaseare significantly enhanced in ionic liquid [BMIm][PF6]. Journal of Molecular Catalysis B: Enzymatic 63, 23  30.
Yap, Y., Lee, H., Hussein, M.R.Y., 2011. Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass and Bioenergy 35, pp. 827–834.
Zhang, S., Zu, Y.G., Fu, Y.J., Luo M., Zhang, D.Y., 2010. Rapid microwave-assisted transesterification of yellow horn oil to biodieselusing a heteropolyacid solid catalyst. Thomas Efferth cBioresource Technology 101, 931 – 936.
Zhao, H., Xia, S.Q., Ma, P.S., 2005. Journal of Chemical Technology and Biotechnology 80, 1089-1096.
Zhu, H., Wu, Z., Chen, Y., Zhang, P., Duan, S., Liu, X., Mao, Z., 2006. Preparation of Biodiesel Catalyzed by Solid Super Base of Calcium Oxide and Its Refining Process. Chin J Catal 27, 391–396.
Zullaikah, S., Lai, C.C., Vali, S.R., Ju Y.H., 2006. A Two-step Acid-catalyzed Process for the Production of Biodiesel from Rice Bran Oil, Bioresource Technol 97, 1889 – 1896.
中油股份有限公司,2010,「高級柴油物質安全資料表」,油品行銷事業部。
吳耿東,2008 「認識生質能源」,物理雙月刊,第30卷,第4期,頁377-386。
李智傑,「酸性觸媒在生質柴油製程之研究」,國立成功大學化學工程學系,碩士論文,2008。
林祐生、李文乾,2009,「生質酒精」,科學發展期刊,第 433 期。
林福文,2008,「微波機械系統設備與製程發展近況」,食品工業專題報導第40卷7期。
凃伊建,2010,「生質酒精生產中稀硫酸前處理對蔗渣結構之影響」,國立台南大學綠色能源科技學系,碩士論文。
陳上權,2012,「以實驗設計法探討酸性水解布袋蓮纖維素之產醣率及釋出有機物之性質」,大仁科技大學環境管理研究所,碩士論文。
卓哲安,2014,「以微波水解搭配吸波材料提高植生復育植物產醣效率之研究」,國立中山大學環境工程研究所,碩士論文
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用及環保。
陳家鐘,「除草劑劑型簡介」,中華民國雜草學會會刊,第二十六卷,第二期,2005。
黃文滉,2014,「生質能源技術重大突破綠色能源明日之星」,台肥季刊,第54卷,第4期。
黃佳慧,2012,「評估本土生質酒精料源之成本效益」,台灣經濟研究月刊,第35卷 第12期。
經濟部能源局,2008,「酒精汽油生質柴油及再生油品之生產輸入摻配銷售業務管理辦法」,石油管理法第三十八條第三項。
經濟部能源局,2010,「石油煉製業與輸入業銷售國內車用柴油摻配酯類之比率實施期程範圍及方式」,石油管理法第三十八條之一第二項。
趙金賢,2010,「結合纖維素分解菌與固定化產醇菌之共培養系統以提升乙醇產量之研究」,大葉大學環境工程學系,碩士論文。
趙國評、楊素幸,2007,「淺談生質能」,林業研究專訊 14 No.3。
蔡文慶,2010,「生質酒精的生產與發展現況」,朝陽科技大學應用化學系,碩士論文。
蔣本基、曾錦清、張怡怡、葉茂榮、蔡佳娟、陳郁文、傅耀宗,2005,「電漿氣化及廢棄物轉化能源之技術調查與評估」,行政院原子委員會委託研究計劃。
鄭加佑,2012,「氫氧混合氣注入柴油引擎燃燒室對節能與污染減量之研究」,國立中山大學環境工程研究所博士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code