Responsive image
博碩士論文 etd-0726104-143956 詳細資訊
Title page for etd-0726104-143956
論文名稱
Title
MOCVD反應器之氮化鎵薄膜成長參數探討
Analysis of GaN films growth in MOCVD reactor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-23
繳交日期
Date of Submission
2004-07-26
關鍵字
Keywords
數值模擬、金屬有機化學氣相沉積、氮化鎵
numerical method, GaN, MOCVD
統計
Statistics
本論文已被瀏覽 5738 次,被下載 10622
The thesis/dissertation has been browsed 5738 times, has been downloaded 10622 times.
中文摘要
本文以有數值分析方法針對金屬有機化學氣相法Metal-Organic Chemical Vapor Deposition (MOCVD)製程設備之製程特性進行模擬探討,並以在藍寶石基板上生成氮化鎵 (gallium nitride簡稱GaN)薄膜,作為研究分析的對象,並以承載氣體之進氣及抽氣方式、進氣口處加裝一氮氣整流裝置,從而找尋控制因素並改善沉積氮化鎵薄膜時厚度均勻度各種可能方法。
Abstract
Using a numerical method to simulate the Metal-Organic
Chemical Vapor Deposition (MOCVD). A study of the GaN films were growth on sapphire substrates, and a new design method which The position of carrier gas inlets and outlets, the gas in inlets by a showerhead reactor, the modified susceptor. The purpose of this research is to maintain deposited GaN film thickness variation range by controlling those parameters which may affect the deposition.
目次 Table of Contents
目錄…………………………………………………………………… I
圖目錄…………………………………………………………………Ⅴ
表目錄……………………………………………………………… Ⅵ
論文摘要(中文)……………………………………………………Ⅶ
論文摘要(英文)……………………………………………………Ⅷ
符號說明………………………………………………………………………Ⅹ
第一章 緒論……………………………………………………………1
1.1 研究背景與動機……………………………………………………1
1.2文獻回顧……………………………………………………………2
1.3 研究內容……………………………………………………………4
第二章 理論模式………………………………………………………6
2.1 物理現象……………………………………………………………6
2.1.1薄膜沉積原理 ……………………………………………………6
2.1.2 化學氣相磊晶機制………………………………………………6
2.1.3熱流耦合效應--熱浮力與自然對流效應………………………8
2.1.4熱質傳耦合—擴散熱效應與熱擴散效應………………………9
2.1.5氮化鎵材料之磊晶成長………………………………………………9
2.1.6 氮化鎵(GAN)化學反應………………………………………………11
2.2基本假設………………………………………………………… 12
2.3 統御方程式………………………………………………………12
2.4 化學反應速率……………………………………………………14
2.5 物理模型…………………………………………………………………… 15
2.6 邊界條件…………………………………………………………17
第三章 數值模擬方法……………………………………………… 19
3.1 數值模擬軟體簡介………………………………………………19
3.2 SIMPLE演算法則 …………………………………………………20
3.3 收斂條件…………………………………………………………24
3.4 網格系統…………………………………………………………25
第四章 結果與討論………………………………………………… 26
4.1氮化條件及薄膜成長之參數條件……………………………… 26
4.2參數討論………………………………………………………… 28
4.2.1氮化鎵製程操作參數………………………………………… 28
4.4.2腔體幾何形狀參數…………………………………………… 39
第五章 結論與建議 …………………………………………………56
5.1 結論 …………………………………………………………… 56
5.2 建議 …………………………………………………………… 58
參考文獻 …………………………………………………………… 59
圖目錄

圖1.1 金屬有機化學氣相沈積(MOCVD)製程設備……………… 2
圖2.1 化學氣相沉積的主要機制……………………… 7
圖2.2 兩階段磊晶成長法……………………………… 10
圖2.3 MOCVD系統簡圖……………………………………… 15
圖2.4 石墨承座幾何形狀尺寸……………………………… 16
圖2.5 MOCVD爐之邊界條件……………………………………… 16
圖2.6 MOCVD腔體之數值模擬用物理模型……………………… 17
圖3.1 SIMPLE解題步驟流程圖 ………………………………… 23
圖3.2 數值分析之網格驗證……………………………………… 25
圖4.1 磊晶溫度對於沈積速率之影響…………………………… 29
圖4.2 磊晶溫度對於晶體結晶性之影響……………………… 29
圖4.3 腔體操作壓力對於沈積速率之影響……………………… 32
圖4.4 操作壓力0.1ATM時質量分率分佈……………………… 32
圖4.5 操作壓力1ATM時質量分率分佈……………………… 33
圖4.6 操作壓力5ATM時質量分率分佈…………………………… 33
圖4.7 腔體壁面溫度對於沈積速率之影響……………………… 35
圖4.8 壁面溫度300K時質量分率分佈……………………… 35
圖4.9 壁面溫度400K時質量分率分佈……………………… 36
圖4.10 壁面溫度500K時質量分率分佈………………………… 36
圖4.11 壁面溫度300K時溫度分佈……………………………… 36
圖4.12 壁面溫度400K時溫度分佈……………………………… 37
圖4.13 壁面溫度 500K時溫度分佈……………………………… 37
圖4.14 氣體入口處垂直距離對於沈積速率之影響……… 40
圖4.15 垂直距離10MM時質量分率分佈……………………… 40
圖4.16 垂直距離30MM時質量分率分佈……………………………41
圖4.17 垂直距離50MM時質量分率分佈……………………… 41
圖4.18 垂直距離70MM時質量分率……………………………… 42
圖4.19 垂直距離90MM時質量分率分佈分佈……………… 42
圖4.20 氣體入口處垂直距離高度與迴流現象之關係圖……… 43
圖4.21 角度(45、90)側邊抽氣對於沈積速率之影響……… 45
圖4.22 90度側邊抽氣時質量分率分佈…………………… 45
圖4.23 45度側邊抽氣時質量分率分佈…………………… 46
圖4.24 氣體入口直徑對於沈積速率之影響…………………… 48
圖4.25 入口直徑360MM時質量分率分佈………………………… 48
圖4.26 入口直徑315MM時質量分率分佈…………………… 49
圖4.27 入口直徑270MM時質量分率分佈…………………… 49
圖4.28 入口直徑225MM時質量分率分佈…………………… 50
圖4.29 噴氣頭加以氮氣整流裝置對於沈積速率之影響……… 52
圖4.30 氮氣流量1000SCCM時質量分率分佈…………………… 52
圖4.31 氮氣流量3000SCCM時質量分率分佈…………………… 53
圖4.32 氮氣流量5000SCCM時質量分率分佈…………………… 53
圖4.33 氮氣流量7000SCCM時質量分率分佈…………………… 54
圖4.34 氮氣流量9000SCCM時質量分率分佈…………………… 54
圖4.35 氮氣整流裝置與迴流現象之關係圖…………………… 55

表目錄
表4.1 藍寶石為基材之氮化條件及薄膜成長之參數條件…………27
表4.2 磊晶溫度對於薄膜之結晶品質影響…………………………27
參考文獻 References
參考文獻

1.Y Kusumoto, T. Hayashi, and S. Komiya, “ Numerical Analysis of the transport Phenomena in MOCVD Process” , Jap. J. Appl.
2.G. Evans, K. Grei, “ Effects of Boundary Conditions on the Flow and Heat Transfer in Rotating disk Chemical Vapor Deposition Reactor” , Numerical Heat Transfer, Vol.12 , pp.243-252, 1987
3.N. Shibata and S. Zembutsu, “A Boundary layer Model for the MOCVD Process in a Vertical Cylinder Reactor”, Jap. J. Appl. Phys. Vel.26, No.9, Sep,1987, pp. 1416-1421.
4.W. Y. Chung, “Modeling of Cu thin film growth by MOCVD process in a vertical reactor”, J. Crystal Growth, Vol.180, pp.691-697, 1997
5.D. I. Fotiadis, S. Kieda, K. F. Jensen, “ Transpoet Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy ” , J. Crystal Growth, Vol.102, pp.441-470, 1990
6.R. L. Mahajan and C. Wei, “Boundary, Soret, Dufour, and Variable Property Effects in Silicon Epitaxy”, J. Heat Transfer, Vol.113, Aug.1991, pp.668-695.
7.C. R. Kleijn, “On the Modeling of Transport phenomena in Chemical Vapour Deposition and its Use in Reactor Design and Process Optimization”, Thin solid Films, 206(1991)47-53.
8.C. R. Kleijn, “A Mathematical Model o f the Hydrodynamics and Gas-Phase Reactions in Silicon LPCVD in a Single-Wafer Reactor”, J. Electrochem. Soc., Vol.138, No.7, July 1991.
9.P. N. Gadgil, “Optimization of a Stagnation Point Flow Reactor Design for Metalorganic Chemical Vapor Deposition by Flow Visualization”, J. Crystal Growth 164(1993)302-312.
10.J. Lee, S. J. Lee, “The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging”, J. Heat and Mass Transfer, Vol.43, pp.555-575, 2000
11.Z. Nami , Student Member, IEEE, A. Erbil, G. S. May, Member, IEEE , ”Reactor Design Considerations for MOCVD Growth of Thin Films, ”IEEE Transactions on Semiconductor Manufacturing,vol.10,no.2,May,pp 295-306,1997
12.Y.K. Chae, Y.E gashira, Y. Shimogaki, K. Sugawara,and H. Komi- yama ”Chemical Vapor Deposition Reactor Design Using Small-scale Diagnostic Experiments Combined with Computational Fluid Dynamics Simulations”, Journal of The Electrochemical Socirty,146(5)1780-1788,1999
13.W. K. Cho , D. H. Choi*, M.-U. Kim” Technical Note Optimization of inlet concentration profile for uniform deposition in a cylindrical chemical vapor deposition chamber” International Journal of Heat and Mass Transfer 42,pp 1141-1146,1999
14.Y. Gao,*Daniel A. Gulino,* and Ryan Higgins**”Effects of susceptor geometry on gan growth on si(111) with a new MOCVD reactor”MRS Internet J. Nitride Semicon. Res.4s1,G3.53,1999
15.H.V. Santen, C.R. Kleijn, Harry E.A. Van Den Akker “On trubulent flows in cold-wall CVD reactors” J. C. Growth 212 (2000) 299-310.
16.H.V. Santen, C.R. Kleijn, Harry E.A. Van Den Akker ”Symmetry Beraking in a stagnation-flow CVD reactor” J. C. Growth 212 (2000) 311-323.
17.Hitoshi Habuka “Hot-wall and cold-wall environments for silicon epitaxial film growth” J. C. Grwoth 223 (2001) 145-155.
18.Nobuyuki Imaishi*, Tsuneyuki Sato, Masayuki Kimura, Yasunobu Akiyama, “Micro/marco modeling of CVD synthesis” J. Crystal Growth, Vol.180, pp.680-690, 1997
19.M. Rebhan, M. Rohwerder, M. Stratmann, ”CVD of silicon and silicides on iron” Applied Surface Science ,Vol. 140, pp.99-105, 1999
20.M. T. Swihart, S. Nijhawan, M. R. Mahajan, S.-M. Suh, S. L.Girshick, “Modeling the nucleation kinetics and aerosol dynamics of particle formation during CVD of silicon from silane” J. Aerosol Sci. Vol. 29, pp.S79-S80, 1998
21.Woo S. Cheong!, Nong M. Hwang",#,*, Duk Y. Yoon, “Observation of nanometer silicon clusters in the hot-"lament CVD process” J. Crystal Growth, Vol.204, pp.52-61, 1999
22.Miyahara 4-Chome, Yodogawa-ku, Osaka, “An effective method for developing process equipment with CFD simulation” International Symposium on Semiconductor Manufacturing, VI-4, pp.129-132, 1994
23.Anantha Krishnan, Ning Zhou, Andrzej Przekwas, ”A computational model for chemical vapor deposition processes in industrial reactors” IEEE, InterSociety Conference on Thermal Phenomena, pp.222-236,1994
24.J. Nishizawaa,b,*, A. Muraia, T. Oizumia,b, T. Kurabayashia,b, K. Kanamotoa, T. Yoshidaa,b, “Surface reaction and selective growth investigation of temperature modulation Si molecular-layer epitaxy” J. Crystal Growth, Vol.233, pp.161-166, 2001
25.Heru Setyawan, Manabu Shimada, Kenji Ohtsuka, Kikuo Okuyama . “Visualization and numerical simulation of fine particle transport in a low-pressure parallel plate chemical vapor deposition reactor” Chemical Engineering Science, Vol.57, pp.497-506, 2002
26.Schmidt, F., Fissan, H., & Schmidt, K. G. “Transport of submicron particles from a leak to a perpendicular surface in a chamber at reduced pressure” J. Aerosol Science, 27(5), pp.739–750, 1996
27.Choi, S. J., Rader, D. J., & Geller, A. S. “Massively parallel simulations of Brownian dynamics particle transport in low pressure parallel-plate reactor” J. Vacuum Science and Technology A,14(2), pp.660–665,1996
28.MacGibbon, B. S., Busnaina, A. A., & Fardi, B. “The effect of thermophoresis on particle deposition in a tungsten low pressure chemical vapor deposition reactor” J. Electrochemical Society, 146(8), pp.2901–2905, 1999 Thermophore
29.Oh, M. D., Yoo, K. H., & Myong, H. K. “Numerical analysis of particle deposition onto horizontal freestanding wafer surfaces heated or cooled”. Aerosol Science and Technology, 25, pp.141–156, 1996
30.莊達人,”VLSI 製造技術” , 高立圖書有限公司, 2000
31.王啟明,”化學氣相沈積之熱流場分析”, 國立中山大學機械工程研究所碩士論文, 2001
32.鄭偉鳴,”垂直式CVD反應器內薄膜成長之參數探討”,國立中山大學機械工程研究所碩士論文, 2002
33.許進旺,” 金屬有機物化學蒸氣沉積反應爐之熱流場數值模擬” ,國立屏東科技大學機械工程系碩士學位論文,2000
34.林勳棟,” 垂直式CVD反應器之流場模擬分析” ,義守大學材料科學與工程學系碩士論文,1999
35.李鴻傑,” 有機金屬化學氣相沉積出口效應之數值模擬”,國立中山大學機械工程研究所碩士論文, 2002
36.陳駿福,”電子迴旋共振反應室之噴氣頭性能模擬”,國立中央大學機械工程研究所碩士論文, 1997
37.李世鴻,”積體電路製程技術”五南圖書出版公司,1998
38.三星電機株式会社,”GaN単結晶薄膜を用いたSAWフィルター及びその製造方法”日本特許出願2000-370461號
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code