Responsive image
博碩士論文 etd-0726105-005243 詳細資訊
Title page for etd-0726105-005243
論文名稱
Title
管材液壓鼓脹成形之成形性分析
Formability analysis of tube hydraulic bulge forming
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-20
繳交日期
Date of Submission
2005-07-26
關鍵字
Keywords
橢圓曲面、塑流應力、成形極限圖、管材液壓成形
ellipsoidal surface, Tube hydroforming, flow stresse, Forming Limit Diagram
統計
Statistics
本論文已被瀏覽 5635 次,被下載 39
The thesis/dissertation has been browsed 5635 times, has been downloaded 39 times.
中文摘要
相較於傳統沖壓成形技術,管材液壓成形是一種相當新穎之成形技術,但在製程參數及模具設計等相關資料庫與知識技術上仍相當缺乏。本論文將決定管材之材料性質與成形極限以探討管材之成形性。
本論文首先針對管材無軸向進給之鼓脹成形提出一數學模式以探討在不同加工條件下管材之塑性變形行為。推導數學模式過程中,將假設管材於鼓脹區之外形為橢圓曲面、管材於鼓脹區之厚度為非均一分佈以及管材與模具間之介面為固著模式。在此固著模式中,管材接觸模具後將不移動或滑動。使用此數學模式有系統地探討了入模半徑、鼓脹長度、異向性以及管材初始厚度等不同成形參數對成形壓力之影響。
接著,應用鼓脹試驗數據提出一數學模式以決定管材之塑流應力。實驗方面將針對鋁合金以及不?袗?管材進行鼓脹試驗。鼓脹試驗過程中將量測管材於極點處之厚度與半徑以及成形壓力。為探討異向性,將以拉伸試驗求取異向性r值。由上述之實驗數據,將可以此數學模式推導出管材於雙軸應力態下之塑流應力。將所得之塑流應力代入有限元素軟體進行管材液壓鼓脹之模擬,所得成形壓力與鼓脹高度關係之模擬結果將與實驗進行比較以驗證本文所提模式之適用性。
最後,將針對鋁合金管材,利用具有軸向進給之管材液壓成形試驗機台進行液壓鼓脹成形試驗以建立材料之成形極限圖。另外,以Hill的新降伏準則及塑性不安定判別式預測金屬材料之成形極限曲線。將理論所預測之成形極限曲線與實驗所量測之成形極限圖互相比較驗證。
本研究成果可做為模具設計時之依據外,所獲得之塑流應力與成形極限圖將可提供企業界進行模擬解析時之製程參數,以使模擬結果更為準確。
Abstract
Tube hydroforming process is a relatively new technology compared to conventional manufacturing via stamping and welding. However there is not much knowledge available for the product or process designers. The objective of this study will determine the flow stress and forming limit diagram of tubular materials to discuss the formability of tubes.
Firstly, a mathematical model is proposed to examine the plastic deformation behavior of a thin-walled tube at different process parameters during the bulge hydroforming process without axial feeding. In the formulation of this mathematical model, an ellipsoidal surface and non-uniform thinning in the free bulged region and sticking friction between the tube and die are assumed. In the sticking friction mode, the elements after contact with the die do not move or slide. The effects of various forming parameters, such as the die entry radius, the bulge length, anisotropy, the initial thickness of the tube, etc., upon the forming pressures are discussed systematically.
Secondly, an analytical model combined with hydraulic bulge tests is proposed to evaluate the properties of tubular materials considering anisotropy effect. Annealed AA6011 aluminum tubes and SUS409 stainless steel tubes are used for the bulge test. The tube thickness and radius at the pole and the internal forming pressure are measured simultaneously during the bulge test. The anisotropic values are obtained from tensile tests. From above experimental data, the effective stress - effective strain relations can be derived by this analytical model. The finite element method is used to conduct the simulations of hydraulic bulge forming with the flow stresses obtained by the above-mentioned model. The analytical forming pressures versus bulge heights are compared with the experimental results to validate the approach proposed in this study.
Finally, this study also establishes the Forming Limit Diagram (FLD) of aluminum tubular material. An experimental system of tube hydroforming in which axial feed is applied to carry out the hydraulic bulge-forming test of the annealed aluminum alloy tubes. Furthermore, Hill’s new yield criterion is also used to predict the Forming Limit Curves of sheets. The predicted forming limit diagrams are compared with the experimental data.
The results of this study can provide useful knowledge for process design. In addition, the process parameters of flow stress and forming limit diagram obtained can improve the accuracy of the simulation results in industrial and academic fields.
目次 Table of Contents
目錄 I
圖目錄 IV
表目錄 VIII
符號說明 IX
中文摘要 XI
英文摘要 XII
第一章 緒論 1
1-1 前言 1
1-2 管材液壓成形之製程簡介 3
1-2-1 管材液壓成形之發展現況 3
1-2-2管材液壓成形之優缺點 4
1-2-3 管材液壓成形之應用 5
1-2-4管材液壓成形之影響因素 6
1-3 管材液壓成形之文獻回顧 8
1-4 本文之研究目的 16
1-5 本文之架構 19
第二章 管材液壓鼓脹成形之解析 25
2-1 解析模式之基本假設 25
2-1-1 座標系定義 26
2-1-2 基本塑性力學方程式 26
2-2 固著模式之建構 28
2-2-1幾何關係 28
2-2-2 極點厚度之求得 29
2-2-3 成形壓力之求得 30
2-3 反推塑流應力之模式建構 32
第三章 成形極限曲線之解析 39
3-1 基本假設 39
3-2 SWIFT擴散不穩定準則 40
3-3 HILL局部不穩定準則 42
3-4 HILL一般化新降伏準則 43
第四章 單軸拉伸試驗與鼓脹試驗 48
4-1 管材之單軸拉伸試驗 48
4-1-1 萬能拉伸試驗機 48
4-1-2拉伸試片之製作 49
4-1-3 異方向性r值之求得 49
4-1-4材料塑流應力之求得 50
4-2管材之液壓鼓脹試驗 51
4-2-1 實驗設備 52
4-2-2 試驗管材之準備 53
4-2-3 模具設計與製作 54
4-2-4 量測儀器說明 56
4-2-5 管材無軸向進給之鼓脹試驗步驟 58
4-3 管材之成形極限試驗 59
4-3-1負載路徑之決定 59
4-3-1 實驗設備 59
4-3-2 試驗管材之準備 60
4-3-3 模具之設計與製作 61
4-3-4 管材具有軸向進給之液壓鼓脹試驗步驟 63
第五章 解析、模擬及實驗結果與討論 85
5-1管材兩端固定之鼓脹成形 85
5-2 單軸拉伸試驗 87
5-2-1 異方向性r值之求得 87
5-2-2 單軸拉伸之塑流應力求得 87
5-3塑流應力之求得與驗證 88
5-3-1鼓脹試驗結果與討論 88
5-3-2 有限元素模擬與實驗值之比較 91
5-4 成形極限圖之建立 93
5-4-1 理論預測成形極限曲線 93
5-4-2 具有軸向進給之液壓成形試驗 94
5-4-3 解析結果與實驗值之比較 94
第六章 結論 123
6-1 管材無軸向進給之液壓鼓脹成形 123
6-2 雙軸應力態下之塑流應力 124
6-3 成形極限曲線之解析與實驗 124
參考文獻 126
作者簡介 136
發表著作 137
參考文獻 References
[1] M. Koc, “Development of guidelines for part, process and tooling design in the tube hydroforming (THF) process”, Doctoral dissertation, The Ohio State University, Columbus, OH, (1999)
[2] F. Dohmann, “Introduction to the process of hydroforming”, Hydroforming of Tubes, Extrusions, and Sheet Metals, in: K. Siegert (Ed.), Proceedings of the International Conference on Hydroforming, p.1 (1999)
[3] M. Koc, T. Altan, “An overall review of the tube hydroforming (THF) technology”, J. Mater. Process. Technol., Vol.108, p.384 (2001)
[4] S. Thiruvarundchelvan and A. C. Lua, “Bulge forming of tubes with axial compressive force proportional to the hyduaulic pressure”, J. of Mater. Shaping Technol. Vol.9, p.133 (1991)
[5] S. H. Zhang, “Developments in hydroforming”, J. Mater. Process. Technol., Vol.91, p.236 (1999)
[6] F. Dohmann, Ch. Hartl, “Tube hydroforming – research and practical applications”, J. Mater. Process. Technol., Vol.71, p.174 (1997)
[7] M. Ahmetoglu, and T. Altan, “Tube hydroforming: state-of-the-art and future trends”, J. Mater. Process. Technol., Vol.98, p.25 (2000)
[8] N. Asnafi, “Analytical modelling of tube hydroforming”, Thin-Walled Structures, Vol.34, p.295 (1999)
[9] U. Lorenz, M. Aust, M. Ahmetoglu, and T. Altan, “Evaluation of friction in tube hydroforming –review of existing methods and tool design”, Report No. THF / ERC / NSM-98-R-07 (1998)
[10] L. Gao, S. Motsch, M. Strano, “Classification and analysis of tube hydroforming processes with respect to adaptive FEM simulations”, J. Mater. Process. Technol., Vol.129, p.261 (2002)
[11] K. Siegert, M. Haussermann, B. Losch, R. Rieger, “Recent developments in hydroforming technology”, J. Mater. Process. Technol., Vol.98, p.251 (2000)
[12] H. U. Lucke, Ch. Hartl, T. Abbey, “Hydroforming”, J. of Mater. Process. Technol. Vol.115, p.87 (2001)
[13] M. Ahmetoglu, K. Sutter, X. J. Li, T. Altan, “Tube hydroforming: current research, applications and need for training”, J. Mater. Process. Technol. Vol.98, p.224 (2000)
[14] F. Dohmann, Ch. Hartl, “Hydroforming – a method to manufacture light-weight parts”, J. Mater. Process. Technol. Vol.60, p.669 (1996)
[15] F. Dohmann, Ch. Hartl, “Liquid-bulge-forming as a flexible production method”, J. of Mater. Process. Technol. Vol.45, p.377 (1994)
[16] D. M. Woo and P. J. Hawkes, “Determination of Stress/Strain Characteristics of Tubular Materials”, J. of the Institute of Metals, Vol.96, p.357 (1968).
[17] D. M. Woo, “Tube-bulging under internal pressure and axial force”, J. of Engineering Material and Technology Vol.95, p.219 (1973)
[18] D. M. Woo, and A. C. Lua, “Plastic deformation of ansiotropic tubes in hydraulic bulging”, J. Mater. Process. Technol. Vol.100, p.421 (1978)
[19] T. Sokolowski, K. Gerke, M. Ahmetoglu, T. Altan, “Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes”, J. of Mater. Process. Technol. Vol.98, p.34 (2000)
[20] T. Altan, M. Koc, Y. Aue-u-lan, K. Tibari, “Formability and Design Issues in Tube Hydroforming”, Hydroforming of Tubes, Extrusions and Sheet Metals Vol.1, p.105 (1999)
[21] S. Fuchizawa, and M. Narazaki, “Bulge test for determining stress-strain characteristics of thin tubes”, Advanced Technology of plasticity, 4th ICTP, Beijing, China, Vol.1, p.488, September 5-9, (1993)
[22] S. Fuchizawa, H. Kondo, A. Shirayori and M. Narazaki, “Forming Limit of Aluminum Tube Subjected to Internal Pressure and Axial Load,” The Proceedings of the 53rd Japanese Joint Conference for the Technology of plasticity, p.219 (2002)
[23] T. Kuwabara, K. Yoshida, K. Narihara and S. Takahashi, “Forming Limit of 5000-Type Aluminum Alloy Tubes in Linear and Bi-Linear Strain Paths,” The Proceedings of the 2002 Japanese Spring Conference for the Technology of plasticity, p.255 (2002)
[24] K. Yamada, H. Mizukoshi and K. Okada, “Forming Limit of Aluminum Alloy Tubes for Hydro Forming Simulation,” The Proceedings of the 2002 Japanese Spring Conference for the Technology of plasticity, p.251 (2002)
[25] G. Nefussi and A. Combescure, “Coupled buckling and plastic instability for tube hydroforming,” Int. J. Mech. Sci., Vol.44, p.899 (2002)
[26] 黃庭彬, “鋁鎂合金與不?袗?板材溫間成形性特性之研究”, 國立台灣大學機械工程研究所博士論文 (2003)
[27] 余振華, “板金多道次成形之成形極限研究”, 國立成功大學機械工程研究所碩士論文 (1989)
[28] T. Yoshida and Y. Kuriyama, “Effects of Material Properties and Process Parameters on Deformation Behavior of Tube Hydroforming”, Innovations In Tube Hydroforming Technology, June p.13 (2000)
[29] M. Koc and T. Altan, “Prediction of forming limits and parameters in the tube hydroforming process,” International Journal of Machine Tools &Manufacture Vol.42, p.123 (2002)
[30] M. Amino and K. Manabe, “Prediction of Wall Thickness Distribution in Tube Hydroforming by FEM Simulation”, The Proceedings of the 48nd Japanese Joint Conference for the Technology of Plasticity, p.373 (1997)
[31] K. Manabe and M. Amino, “Influence of Plastic Anisotropy on Tubular Hydroformed Component”, The Proceedings of the 49nd Japanese Joint Conference for the Technology of Plasticity, p.303 (1998)
[32] K. Manabe, M. Amino, “Effects of process parameters and material properties on deformation process in tube hydroforming”, J. of Mater. Process. Technol. Vol.123, p.285 (2002)
[33] M. Fukumura, K. Suzuki, K. Uwai, S. Toyoda, Q. Yu and M. Shiratori, “Friction Effect Dependence on the Die Shape During the Tube Hydroforming Process”, The Proceedings of the 52nd Japanese Joint Conference for the Technology of Plasticity, p.17 (2001)
[34] G.T. Kridli, L. Bao, P.K. Mallick, Y. Tian”, Investigation of thickness variation and corner filling in tube hydroforming”, J. of Mater. Process. Technol. Vol.133, p.287 (2003)
[35] S. Fuchizawa, K. Satou, K. Itoga, A.Shirayori and M.Navazak,” Effect of Lubrication on Deformation Behavior of Tube in Hydraulic Bulging with Square Die,” The Proceedings of the 51nd Japanese Joint Conference for the Technology of Plasticity, p.361 (2000)
[36] S. Fuchizawa, Y. Ikeda, A. Shirayori and M. Narazake, “Effect of Lubrication on Deformation Behavior of Tube in Hydraulic Bulging with Square Die(2nd Report),” The Proceedings of the 52nd Japanese Joint Conference for the Technology of Plasticity, p.19 (2001)
[37] M. Ahmed, M.S.J. Hashmi, “Estimation of machine parameters for hydraulic bulge forming of tubular components”, J. of Mater. Process. Technol. Vol.64, p.9 (1997)
[38] Ch. Hartl, “Theoretical Fundamentals of Hydroforming”, International Conference on Hydroforming, Fellbach/Stuttgart (1999)
[39] N. Asnafi, A. Skogsgardh “Theoretical and Experimental Analysis of Stroke-controlled Tube Hydroforming”, Material Science and Engineering A279, p.95 (2000)
[40] M. Koc, “Investigation of the effect of loading path and variation in material properties on robustness of the tube hydroforming process”, J. of Mater. Process. Technol. Vol.133, p.276 (2003)
[41] S. Fuchizawa, “Influence of strain-hardening exponent on the deformation of thin-walled tube of finite length subjected to hydrostatic internal pressure”, Advanced Technology of Plasticity 1st ICTP, p.297 (1984)
[42] F.K. Chen, “Formability ananysis of tube-hydroforming process”, International Journal of Applied Mechanics and Engineering, Vol.4, No.1, p.149 (1999)
[43] H.L. Xing, A. Makinouchi, “Numerical analysis and design for tubular hydroforming”, International Journal of Mechanical Sciences Vol.43, p.1009 (2001)
[44] F. Vollertsen, M. Plancak, “On possibilities for the determination of the coefficient of friction in hydroforming of tubes”, J. of Mater. Process. Technol. Vol.125-126, p.412 (2002)
[45] M. Ahmed, M.S.J. Hashmi, “Three-dimensional finite-element simulation of bulge forming”, J. of Mater. Process. Technol. Vol.119, p.387 (2001)
[46] N. Jain, J. Wang, R. Alexander, “Finite element analysis of dual hydroforming processes”, J. of Mater. Process. Technol. Vol.145, p.59 (2004)
[47] J. B. Yang, B. H. Jeon, S. I. Oh, “Design sensitivity analysis and optimization of the hydroforming process”, J. of Mater. Process. Technol. Vol.113, p.666 (2001)
[48] N. Boudeau, A. Lejeune, J.C. Gelin, “Influence of material and process parameters on the development of necking and bursting in flange and tube hydroforming”, J. of Mater. Process. Technol. Vol.125-126, p.849 (2002)
[49] M. Ahmed, M.S.J. Hashmi, “Finite-element analysis of bulge forming applying pressure and in-plane compressive load”, J. of Mater. Process. Technol. Vol.77, p.95 (1998)
[50] M. Koc and T. Altan, “Application of two dimensional (2D) FEA for the tube hydroforming process”, International Journal of Machine Tools &Manufacture Vol.42, p.1285 (2002)
[51] L. P. Lei, B.S. Kang, S. J. Kang, “Prediction of the forming limit in hydroforming process using th finite element method and a ductile fracture criterion”, J. of Mater. Process. Technol. Vol.113, p.673 (2001)
[52] J. Kim, L. P. Lei, B. S. Kang, “Preform design in hydroforming of automobile lower arm by FEM”, J. of Mater. Process. Technol. Vol.138, p.58 (2003)
[53] L. P. Lei, J. Kim, S. J. Kang, B. S. Kang, “Rigid–plastic finite element analysis of hydroforming process and its applications”, J. of Mater. Process. Technol. Vol.139, p.187 (2003)
[54] L. P. Lei, D. H. Kim, S. J. Kang, S. M. Hwang, B. S. Kang, “Analysis and design of hydroforming processes by the rigid–plastic finite element method”, J. of Mater. Process. Technol. Vol.114, p.201 (2001)
[55] M. Strano, S. Jirathearanat, S. G. Shr, T. Altan, “Virtual process development in tube hydroforming”, J. of Mater. Process. Technol. Vol.146, p.130 (2004)
[56] Y. Aue-U-Lan, G. Ngaile, T. Altan, “Optimizing tube hydroforming using process simulation and experimental verification”, J. of Mater. Process. Technol. Vol.146, p.137 (2004)
[57] L. Lang, S. Yuan, X. Wang, Z.R. Wang, Z. Fu, J. Danckert, K.B. Nielsen, “A study on numerical simulation of hydroforming of aluminum alloy tube”, J. of Mater. Process. Technol. Vol.146, p.377 (2004)
[58] S. Jirathearanat, Ch. Hartl, T. Altan, “Hydroforming of Y-shapes—product and process design using FEA simulation and experiments”, J. of Mater. Process. Technol. Vol.146, p.124 (2004)
[59] H. J. Kim, B. H. Jeon, H. Y. Kim, J. J. Kim, “Finite element analysis of the liquid bulge forming processes”, Advanced technology of plasticity 4th ICTP, p.545 (1993)
[60] M. Koc, T. Allen, S. Jiratheranat, T. Altan, “The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts”, International Journal of Machine Tools & Manufacture Vol.40, p.2249 (2000)
[61] M. Imaninejad, G. Subhash, A. Loukus, “Experimental and numerical investigation of free-bulge formation during hydroforming of aluminum”, J. of Mater. Process. Technol. Vol.147, p.247 (2004)
[62] B. Carleer, G. van der Kevie, L. de Winter, B. van Veldhuizen, “Analysis of the effect of material properties on the hydroforming process of the tubes,” J. Mater. Process. Technol. Vol.104, p.158 (2000)
[63] K. Yamada, H. Mizukoshi and H. Okada, “Mechanical properties of aluminum alloy tubes for hydroforming”, The Proceedings of the 51nd Japanese Joint Conference for Technology of Plasticity, p.349 (2000)
[64] S. Thiruvarudchelvan, G. L. Seet, H. E. Ang, “Computer-monitored hydraulic bulging of tubes”, J. of Mater. Process. Technol. Vol.57, p.182 (1996)
[65] S. Fuchizawa, M. Narazaki, A. Shirayori, “Bulge forming of aluminum alloy tubes by internal pressure and axial compression”, Advanced technology of plasticity 5th ICTP, p.497 (1996)
[66] G. Ngaile, S. Jaeger, T. Altan, “Lubrication in tube hydroforming (THF) Part I. Lubrication mechanisms and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones”, J. Mater. Process. Technol. Vol.146, p.108 (2004)
[67] G. Ngaile, S. Jaeger, T. Altan, “Lubrication in tube hydroforming (THF) Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test”, J. Mater. Process. Technol. Vol.146, p.124 (2004)
[68] F. Dohmann, A. Böhm, K. U. Dudziak, “The Shaping of Hollow Shaft-Shaped Workpieces By Liquid bulge forming”, Advanced Technology of plasticity 4th ICTP, p.447 (1993)
[69] S. Kim, Y. Kim, “Analytical study for tube hydroforming”, J. of Mater. Process. Technol. Vol.128, p.232 (2002)
[70] C. L. Chow, X. J.Yang, “Bursting for fixed tubular and restrained hydroforming”, J. of Mater. Process. Technol. Vol.130-131, p.107 (2002)
[71] Z. C. Xia, “Failure analysis of tubular hydroforming”, J. of Engineering Material and Technology Vol.123, p.423 (2001)
[72] W. J. Sauer, A. Gotera, F. Roff and P. Huang, “Free forming of tubes under intermal pressure and axial compression”, Proc. 6th NAMRC, p.228 (1978)
[73] S. Kim, Y. Kim, “Analytical study for tube hydroforming”, J. of Mater. Process. Technol. Vol.128, p.232 (2002)
[74] M. Strano, S, Jirathearanat and T. Altan, “Adaptive FEM simulation for tube hydroforming: a geometry-based approach for wrinkle detection”, Annals of the CIRP Vol.50, p.185 (2001)
[75] A. Lejeune, N. Boudeau, J. C. Gelin, “Influence of material and process parameters on bursting during hydroforming process”, J. of Mater. Process. Technol. Vol.143-144, p.11 (2003)
[76] W. F. Hosford, R. M. Caddell, “Metal forming mechanics and metallurgy”, Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632 (1983)
[77] E. M. Miellnik, “Metalworking Science and Engineering”, International Edition, McGraw-Hill, Inc. (1993)
[78] 黃建成, “管材液壓鼓脹成形之力學解析”, 國立中山大學機械與機電工程研究所碩士論文 (2001)
[79] A. A. Giordano, F. M. Hsu. “Least square estimation with applications to digital signal processing”, Wiley, New York (1985)
[80] S. P. Keeler and W. A. Backofen, “Plastic Instability and Fracture inSheets Stretched Over Rigid Punches,” Trans. ASM, Vol.56, p.25 (1963)
[81] G. M. Goodwin, “Application of Strain Analysis on Sheet Metal Forming Problems in The Press Shop,” SAE Paper, No.680093 (1968)
[82] 林瑞彰, “管材之成形極限研究”, 國立中山大學機械與機電工程研究所碩士論文 (2003)
[83] H. W. Swift, “Plastic Instability under Plane Stress”, J. Mech. Phys. Solid, Vol.1, p.1 (1952)
[84] R. Hill, “On Discontinuous Plastic States, with Special Reference of Localized Necking in Thin Sheets”, J. Mech. Phys. Solid, Vol.1, p.19 (1952)
[85] R. Hill, “Theoretical plasticity of textured aggregates”, Math. Proc. Camb. Phil. Soc., p.17 (1979)
[86] A.S. Kornonen, “On the Theories of Sheet Metal Necking and Forming Limits,” J. Eng. Mater. Tech., Trans. of the ASME, Vol.100, p.303 (1978).
[87] S. Kobayashi, S. Oh, T. Altan, “Metal forming and the finite element method”, Oxford University Press, p.93 (1989)
[88] Standard method of tension testing wrought and cast aluminum and magnesium alloy products [metric]. Annual book of ASTM standards section 3; 03.01, p.60 (1993)
[89] 蔡錦文, “管材液壓鼓脹成形之實驗與模擬”, 國立中山大學機械與機電工程研究所碩士論文 (2002)
[90] 國光牌特級循環機油(CPC Circulation Oil R)
[91] 小栗富士雄與小栗達男共著, 張兆豐主編, “標準機械設計圖表遍覽 改新增補2版”, 臺隆書局 (2001)
[92] Robert L. Norton, “Machine design”, Prentice-Hall International, Inc. (1996)
[93] 陳秉鴻, “具有背壓控制之管件液壓成形之自適性模擬”, 國立中山大學機械與機電工程研究所碩士論文 (2005)
[94] 王之佑, “管材液壓成形試驗機之設計與製作”, 國立中山大學機械與機電工程研究所碩士論文 (2003)
[95] 林子權, “三通管件液壓機之試作與液壓成形實驗”, 國立中山大學機械與機電工程研究所碩士論文 (2005)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.150.89
論文開放下載的時間是 校外不公開

Your IP address is 3.17.150.89
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code