Responsive image
博碩士論文 etd-0726105-011342 詳細資訊
Title page for etd-0726105-011342
論文名稱
Title
有限脈衝響應類神經網路與時域有限差分法的結合
Incorporation of Finite Impulse Response Neural Network into the FDTD Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-19
繳交日期
Date of Submission
2005-07-26
關鍵字
Keywords
類神經網路、有限脈衝響應類神經網路、時域有限差分
Finite-Difference Time Domain, artificial neural networks, Finite Impulse Response Neural Networks
統計
Statistics
本論文已被瀏覽 5662 次,被下載 11
The thesis/dissertation has been browsed 5662 times, has been downloaded 11 times.
中文摘要
時域有限差分法 ( Finite-Difference Time-Domain, FDTD )為一套非常有效的全波分析電磁現象的數值方法,由於它的適應性,所以可以解決在各種不同介質中的電磁散射問題,如微波電路、生物組織電磁吸收的問題。

但是使用FDTD法在微波積體電路時,往往需要冗長的計算時間,若所要模擬的結構很複雜,而且又想要得到正確的頻率響應時,則模擬的時間將會過長而顯得效率不彰。因此,在本論文中,吾人介紹一種類神經網路的方法「有限脈衝響應類神經網路」可以增加FDTD法的計算速度,當FDTD模擬一足夠的時間步階時便停止計算,使用FIRNN來預測之後時間步階的訊號,因此可以改善FDTD的模擬效率。
Abstract
The Finite-Difference Time-Domain Method (FDTD) is a very powerful numerical method for the full wave analysis electromagnetic phenomena. Due to its flexibility, it can be used to solve numerous electromagnetic scattering problems on microwave circuits, dielectrics, and electromagnetic absorption in biological tissue at microwave frequencies.

However, it needs so much computation time to simulate microwave integral circuits by applying the FDTD method. If the structure we simulated is complicated and we want to obtain accurate frequency domain scattering parameters, the simulation time will be so much longer that the efficiency of simulation will be bad as well. Therefore, in the thesis, we introduce an artificial neural networks (ANN) method called “Finite Impulse Response Neural Networks (FIRNN)” can speed up the FDTD simulation time. In order to boost the efficiency of the FDTD simulation time by stopping the simulation after a sufficient number of time steps and using FIRNN as a predictor to predict time series signal.
目次 Table of Contents
第一章序論……………………………………………………………………………1
1.1 概序………………………………………………………………………….1
1.2 論文大綱…………………………………………………………………….2
第二章 類神經網路(Artificial Neural Network ,ANN)……………………………...3
2.1生物神經系統簡介…………………………………………………………..3
2.1.1神經細胞(neuron)…………………………………………………………..4
2.1.2神經細胞系統的工作機制………………………………………………...4
2.2 類神經網路由來…………………………………………………………….5
2.3類神經元 (Artificial Neuron)………………………………………………..6
2.4 類神經網路………………………………………………………………….9
2.5類神經網路應用……………………………………………………………12
2.6類神經網路優缺點…………………………………………………………12
2.7類神經網路的學習訓練(training)………………………………………….13
第三章 有限脈衝響應類神經網路Finite Impulse Response FIR Neural Network
……………………………………………………………………………..20
3.1 動態的類神經元…………………………………………………………...20
3.2有限脈衝響應的模型Finite-duration Impulse Response FIR model ……..21
3.3 有限脈衝響應類神經網路FIR Neural Network …………………………23
3.4 時間回傳學習Temporal Back-Propagation Learning……………………..23
第四章 時域上的預測………………………………………………………………30
4.1 時間序列預測的目的……………………………………………………...30
4.2要如何實現函數g呢?...................................................................................30
4.3 重要參數的設定……………………………………………………...……33
4.3.1學習率 (learning rate) η..............................................................................34
4.3.2機率演算法……………………………………………………………….37
4.3.3 慣性項(momentum)α…………………………………………………….38
4.3.4隱藏層層數……………………………………………………………….40
4.3.5隱藏層神經元的個數與FIR filter的長度……………………………….41
4.3.6 間隔取樣…………………………………………………………………43
4.3.7 學習訓練的終止…………………………………………………………46
第五章 有限脈衝響應類神經網路與時域有限差分法的結合……………………48
5.1封裝蕭基二極體……………………………………………………………48
5.2 邊耦帶通濾波器(edge coupled bandpass filter)…………………………...50
5.3 表面聲波濾波器(Surface Acoustic Wave, SAW filter)…………………...54
5.4 接收模組的模擬…………………………………………………………...58
第六章 結論………………..………………………………………………………..66
附錄A 三次仿樣曲線(cubic spline)..……………………………………………….67
附錄B 片段三次Hermite內插法(Piecewise Cubic Hermite Interpolation, PCHI)...73
參考文獻 References
[1] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propagat., vol.14, No.3, pp.300-307, May 1966.
[2] A. Taflove, Computational Electrodynamics The Finite-Difference Time-Domain Method, 1995.
[3] S. Haykin, Neural Networks: A Comprehensive Foundation New York: Macmillan, 1994.
[4] 葉怡成,類神經網路模式應用與實作,儒林圖書公司,1997年。
[5] 蘇木春,張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,全華科技圖書,1997年。
[6] E. A. Wan. Finite Impulse Response Neural Networks with Applications in Time Series Prediction. ,, PhD thesis, Stanford University, 1993.
[7] 沈政,林庶芝,腦模擬與神經計算機,五南圖書出版公司,1986年。
[8] 林昇甫,洪成安,神經網路入門與圖樣辨識,全華科技圖書股份有限公司,1996年。
[9] 張智星,MATLAB程式設計與應用,清蔚科技出版,2000年。
[10] W. Chen, N. Minh, and J. Litva, “On incorporating finite impulse response neural network with finite difference time domain method for simulating electromagnetic problems,” in Proc. Antennas and Propagation Soc. Int. Symp., vol. 3, 1996, pp. 1678–1681.
[11] C.Wu, E. A. Navarro, and J. Litva, “Combination of finite impulse response neural network technique with FDTD method for simulation of electromagnetic problems,” Electron. Lett., vol. 32, no. 12, pp. 1112–1113, Jun. 1996.
[12] C.Wu, E. A. Navarro, J. Navasquillo, and J. Litva, “FDTD signal extrapolation using a finite impulse response neural network model,” Microw.Opt. Technol. Lett., vol. 21, no. 5, pp. 325–330, Jun. 1999.
[13] C. Emili, F. Alimenti, P. Mezranotte, L. Roselli, and R. Sorrentino, “Rigorous modeling of packaged Schottky diodes by the nonlinear lumped network (NL2N)-FDTD approach,” Microwave Theory and Techniques, IEEE Transactions on , Vol. 48, pp. 2277-2282, Dec. 2000.
[14] 吳柏樟,應用時域有限差分法模擬主/被動元件,中山大學碩士文,2003年。
[15] W. L. KO, R. Mittra, “A Combination of FD-TD and Prony’s Methods for Analyzing Microwave Integrated Circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 39, Dec. 1991.
[16] C. J. Railton, and S. A. Meade, “Fast Rlgorous Analvsis of Shielded Planar Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, May 1992.
[17] 林冠諭,封裝寄生效應對表面聲波元件效能的影響研究,中山大學碩士文,2002年。
[18 ] K. Y. Lin, and K. H. Lin, “Study of crosstalk effects on the packaged SAW by the FDTD method,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 52, pp. 445 - 454, Mar. 2005.
[19] 黃俊憲,結合散射參數之時域有限差分法在微波電路模擬上的應用,中山大學碩士論文,2003年。
[20] Z. Yuan and Z. Li, “Efficient Computation of Frequency-Dependent Parameters for On-Chip Interconnects via Two-Dimensional FDTD and Time Signal Prediction Technique,” IEEE Transactions On Advanced Packaging, vol. 22, pp. 665-672, Nov. 1999.
[21] R. K. Mishra and A. Patnaik, “Use of artificial neural network in microwaves,” IEEE Micro, vol. 1, pp. 55–60, Mar. 2000.
[22] S. Goasguen and S. M. El-Ghazaly, “A practical large-signal global modeling simulation of a microwave amplifier using artificial neural network,” IEEE Microw. Guided Wave Lett., vol. 10, no. 7, pp. 273–275, Jul. 2000.
[23] R. K. Mishra, P. S. Hall, “NFDTD concept,” IEEE Transactions on Neural Networks, vol. 16, pp. 484 - 490, Mar. 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.96.61
論文開放下載的時間是 校外不公開

Your IP address is 18.226.96.61
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code