Responsive image
博碩士論文 etd-0726105-115050 詳細資訊
Title page for etd-0726105-115050
論文名稱
Title
水分子在奈米侷限空間下之行為研究
The study of behaviors of nanoconfined water molecules
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-05-24
繳交日期
Date of Submission
2005-07-26
關鍵字
Keywords
剪切黏滯係數、水薄膜、流變性質、分子動力學、擴散係數
Rheological properties, Shear viscosity; Molecular dynamics simulation, Nanoconfined films, Diffusion coefficients
統計
Statistics
本論文已被瀏覽 5716 次,被下載 2113
The thesis/dissertation has been browsed 5716 times, has been downloaded 2113 times.
中文摘要
在本研究中,首先透過分子動力學研究水分子在兩晶格排列為100之金平板間,相距分別為24.48、16.32、12.24、11.22及10.20 等不同侷限空間下之行為。模擬結果顯示水分子的分佈與空間大小有關。在觀察隨著距離變化改變的自我擴散係數中,發現水分子存在著z方向與x-y平面上隨著兩平板間距離增大而有不同的下降趨勢的動態特性。另外,更討論了不同金平板在(100)、(111)、(110)三種不同晶格排列下對水分子的影響。模擬結果顯示金平板的排列對水分子的分佈亦有影響。在(100)和(111)排列的金平板中,吸附層中的水分子皆平坦的附著在金平板上,然而在(110)排列下,水分子出現一層波浪狀的結構。且水分子在(110)的排列中將會最接近兩金平板。另外,水分子在z方向的自我擴散細數以(110)排列時最大,而x-y平面上的擴散則以(100)排列時為最大。
最後,研究庫耶流中的密度分佈,速度分佈,及擴散係數。並探討水分子的剪切黏滯度與水薄膜的剪切速率之間的關係。發現擴散係數在某一個剪切速率之上會突然的升高。而隨著剪切速率增高,剪切黏滯度降低,尤其是在水分子層非常薄的時候,這意味著侷限空間下之奈米薄膜的黏滯度有著剪切稀釋的性質。另外,研究中也發現隨著水薄膜厚度的降低,剪切黏滯度增高。
Abstract
In the beginning of this study, Molecular dynamics simulation is utilized to investigate the behavior of water molecules confined between two Au plates of (001) planes separated by gaps of 24.48, 16.32, 12.24, 11.22, and 10.20 . The simulation results indicate that the arrangements of the water molecules are dependent on the gap size. An inspection of the variation of the self-diffusion coefficients with the gap size suggests that the difference between the dynamic properties of the water molecules in the z-direction and the x-y plane decreases as the distance between the two Au plates increases. Moreover, we discuss the effects of different lattice structures, (100), (110) and (111),on the water molecules. The simulation results indicate that the arrangements of the water molecules are dependent on Au plate surface structures. The adsorption of the plate creates flat water layers in the proximity of each plate surface for (100) and (111) cases, but wave-like water layer for Au (110) plate. The absorbed water layer is the most close to plate surface for (110) lattice structure. Moreover, the self-diffusion coefficient in the z-direction for (110) case is the largest, meanwhile, the water molecules have a greater ability to diffuse in the x-y plane for (100) case.
Finally,the density distribution, velocity profile, and diffusion coefficients of the water film in a Couette flow are studied. Shear viscosity and its dependence on the shear rate of the water film are also examined in the present research. The diffusion of the whole film increases dramatically as the shear rate greater than a critical value. The shear viscosity decreases as the shear rate increases, especially for the water film with a small thickness, which implies the shear-thinning behavior for viscosity of the nanoconfined film. Moreover, increase in shear viscosity with a decrease in the film thickness can also be found in the present study.
目次 Table of Contents
目錄
中文摘要 1
ABSTRACT 2
第1章 緒論 4
1.1 研究動機 4
1.2 文獻回顧 9
1.3 本文架構 11
第2章 分子動力學理論 12
2.1 勢能函數 13
2.2 運動方程 21
2.3 週期性邊界條件 22
2.4 原子級應力計算方法 24
第3章 分子動力學數值方法 28
3.1 鄰近原子表列法 28
3.1.1 Verlet List表列法 28
3.1.2 Cell Link表列法 29
3.1.3 Verlet List表列法結合Cell Link表列法 30
3.2 無因次化 32
第4章 結果分析與討論 34
4.1 靜態 34
4.1.1 物理模型 34
4.1.2 相對密度( )、氫鍵( )、定向因子(s(z))、擴散係數 35
4.2 不同平面之影響 46
4.2.1相對密度( )、氫鍵( )、定向因子(s(z))、擴散係數 46
4.2.2氫鍵鍵長 53
4.2.3正向應力 57
4.3 剪切 60
4.3.1物理模型 60
4.3.2擴散係數 61
4.3.3相對密度( )與速度分佈 63
4.3.4剪切應力對時間 63
4.3.5黏滯係數 64
第5章 結論與建議 73
5.1 結論 73
5.2 建議與未來展望 75

表目錄
表2.1 三種水勢能參數。 18
表2.2 金原子之TIGHT-BINDING勢能參數。 18
表2.3 F3C勢能參數表。 19
表2.4 SPOHR勢能中之參數。 20
表 3.1無因次化基準量。 33
表 3.2各物理量之無因次化量。 33
表4.1. 不同空間下的每一個水分子的平均氫鍵鍵結數值。 45

圖目錄
圖 2.1 VELOCITY VERLET演算法。 21
圖 2.2 週期性邊界條件示意圖。 22
圖 2.3 局部原子P0的VORONOI 體積。 27
圖 2.4 局部原子P0的VORONOI 體積。 27
圖 3.1 VERLET LIST示意圖。 29
圖 3.2 CELL LINK示意圖。 30
圖 3.3 VERLET LIST 結合 CELL LINK建立鄰近表列。 31
圖 4.1.0水薄膜位於探針與基版間之物理模型(A)立體圖(B)側視圖。 40
圖4.1.1分子動力學模擬之流程圖。 41
圖 4.1.2水在Z方向上不同寬度下時氫與氧的數密度、ORIENTATION FACTOR及氫鍵圖 (A) 24.48 (B) 16.32 (C) 12.24 (D) 11.22 (E) 10.20 。 44
圖4.1.3 Z方向上及X-Y平面上的自我擴散係數圖。 45
圖4.2.1 靠近不同金平板晶格排列下的第一層水分子結構圖 (A) (100) (B) (110) (C) (111) 其中黃色為氧原子,綠色為氫原子。 49
圖 4.2.2水分子在10.2 下,不同金平板的晶格排列下之氧原子相對數密度的空間分佈比較圖。 50
圖 4.2.3 水分子在10.2 下,不同金平板的晶格排列下之定向因子 的空間分佈比較圖。 50
圖4.2.5 不同金平板的晶格結構下之自我擴散係數圖 (A) Z方向 (B) X-Y 平面。 52
圖4.2.6水在Z方向上寬度24.48 時,氫與氧的數密度及氫鍵鍵長圖。 55
圖4.2.7水在Z方向上寬度10.2 下,氫與氧的數密度及氫鍵鍵長圖。 55
圖4.2.8水在Z方向上寬度24.48 下時,不同平面下之氫鍵鍵長比較圖。 56
圖4.2.9水在Z方向上寬度10.2 下,金平板排列(110)時,氫與氧的數密度及氫鍵鍵長圖。 56
圖4.2.10水在Z方向上寬度24.48 下,金平板排列(100)時氫與氧的數密度及X、Y、Z方向上之正向應力分佈圖。 59
圖4.2.11水在Z方向上寬度24.48 下,金平板排列(110)時氫與氧的數密度及X、Y、Z方向上之正向應力分佈圖。 59
圖4.3水薄膜在兩金平板動態剪切下之側面圖。 66
圖4.3.0分子動力學模擬剪切之流程圖。 67
圖4.3.1水在Z方向上的寬度為10.2 時,不同剪切速率下之X、Y及Z方向上之擴散係數圖。 68
圖4.3.2水在Z方向上的寬度為10.2 時,不同剪切速率下之X方向上之擴散係數圖。 68
圖4.3.3水在Z方向上的寬度為24.48 時,不同剪切速率下之X、Y及Z方向上之擴散係數圖。 69
圖4.3.4水在Z方向上的寬度為24.48 時,不同剪切速率下之X方向上之擴散係數圖。 69
圖4.3.5水在Z方向上的寬度為10.2 及剪切速率為 時之數密度與速度分佈圖。 70
圖4.3.6水在Z方向上的寬度為24.48 及剪切速率為 時之氫與氧之數密度與速度分佈圖。 70
圖4.3.7水在Z方向上的寬度為10.2 時,不同剪切速率下之剪切應力對時間圖。 71
圖4.3.8水在10.2A下1011的速度下的氫鍵對時間與剪應力之比較圖。 71
圖4.3.9水在Z方向上的寬度為10.2 及24.48 時之不同剪切速率對黏滯係數圖。 72
參考文獻 References
參考文獻
[1] 楊安正,平行處理於分子動力學模擬效率增進之探討,碩士論文,(2004)
[2] R. Komanduri and N. Chandrasekaran, Molecular dynamics simulation of atomic-scale friction ,Phys. Rev. B ,61(20),14007(2000)
[3] Luzheng Zhang and Shaoyi Jiang, Molecular simulation study of nanoscale friction between alkyl monolayers on Si(111) immersed in solvents, J. Chem. Phys. 119(2), 765,(2003)
[4] 果尚志,奈米世界的全方位性工具,物理雙月刊(23卷6期),(2001)
[5] G. T. Gao, Paul T. Mikulski,and Judith A. Harrison, Molecular-Scale Tribology of Amorphous Carbon Coatings: Effects of Film Thickness, Adhesion, and Long-Range Interactions,J. AM. CHEM. SOC., 124, 7202-7209(2002)
[6] 溫詩鑄,奈米摩擦學,1998
[7] E. A. Jagla, Boundary Lubrication Properties of Materials with Expansive Freezing Phys. Rev. Lett.,88(24),245504 (2002)
[8] M.-C. Bellissent-Funel, Structure and dynamics of water near hydrophilic surfaces ,J. Mol. Liq. 78, 19 (1998).
[9] M.-C. Bellissent-Funel, Status of experiments probing the dynamics of water in confinement, Eur. Phys. J. E 12, 83 (2003).
[10] Y. Zhu, and S. Granick, Viscosity of Interfacial Water,Phys. Rev. Lett. 87, 096104 (2001).
[11] U. Raviv, S. Giasson, J. Frey, and J. Klein, Viscosity of ultra-thin water films confined between hydrophobic or hydrophilic surfaces ,J. Phys.: Condens. Matter 14, 9275 (2002).
[12] Opitz, S. I.-U. Ahmed, J. A. Schaefer, and M. Scherge, Friction of thin water films: a nanotribological study,Surf. Sci. 504, 199 (2002).
[13] R. Prioli, D. C. Reigada, and F. L. Freire, Jr., Nanoscale friction and wear mechanisms at the interface between a boron carbide film and an atomic force microscope tip, Journal of Applied , 87,3,1118 ( 2000 )
[14] R. Andrew Atkinson and Vladimir Saudek, “FEBS Letters”, 510, 1-4, (2002).
[15] Ronald A. Venters, Richele Thompson and John Cavanagh, “Journal of Molecular Structure”, 602-603, 275-292, 2002.
[16] C. B. Anfinsen, Science 181, 223 (1973)
[17] Browne, W.J., North, A. C., Phillips, D.C., Drew, K., Vanaman, T. C., Hill, R. L., “A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme”, Journal of Moleculae Biology, Vol.42, p.p.65-86, 1969.
[18] Chothia C, Lesk AM, “Relationship between the divergence of sequence and structure in proteins”, EMBO J, Vol.5, p.p.823-827, 1986.
[19] John Moult, “The current state of the art in protein structure prediction”, Current Opinion in Biotechnology, Vol.7, p.p.422-427, 1996.
[20] Timothy Cardozo, Serge Batalov, Ruben Abagyan, “Estimating local backbone structural deviation in homology models”, Computers and Chemistry, Vol.24, p.p.13-31, 2000.
[21] Sander and R. Schneider, Proteins, 9, 56-68, 1991.
[22] Burkhard Rost, Reinhard Schneider and Chris Sander, “Protein Fold Recognition by Prediction-based Threading”, J. Mol. Biol., 270, 471-480, 1997.
[23] B. Rost, Folding & Design, 2, S19-S24, 1997.
[24] J. H. Irving, and J. G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys., 18 , 817-829, 1950.
[25] M. C. Gordillo, and J. Martí, Hydrogen bond structure of liquid water confined in nanotubes,Chem. Phys. Lett. 329, 341 (2000).
[26] M. C Gordillo, and J. Martí, Hydrogen bonding in supercritical water confined in carbon nanotubes, Chem. Phys. Lett. 341, 250 (2001).
[27] J. Martí, and M.C. Gordillo, Temperature effects on the static and dynamic properties of liquid water inside nanotubes ,Phys. Rev. E 64, 021504 (2001).
[28] I.V. Brovchenko, A. Geiger, and D. Paschek, Fluid Phase Equilibr 183-184, 331 (2001).
[29] P. Gallo,M. Rovere, and E. Spohr, Supercooled Confined Water and the Mode Coupling Crossover Temperature, Phys. Rev. Lett. 85, 4317 (2000).
[30] P. Gallo, M. Rapinesi, and M. Rovere, Confined water in the low hydration regime , J. Chem. Phys. 117, 369 (2002).
[31] M. Rovere and P. Gallo, Effects of confinement on static and dynamical properties of water ,Eur. Phys. J. E 12, 77 (2003).
[32] Y. C. Liu, Q. Wang, and L. H. Lu, Water confined in nanopores: its molecular distribution and diffusion at lower density , Chem. Phys. Lett. 381, 210 (2003).
[33] R. Zangi, and A. E. Mark, Monolayer Ice, Phys. Rev. Lett. 91, 025502 (2003).
[34] R. Zangi and A. E. Mark, Bilayer ice and alternate liquid phases of confined water, J. Chem. Phys. 119, 1694 (2003).
[35] Y. Leng1 and P.T. Cummings, Fluidity of Hydration Layers Nanoconfined between Mica Surfaces, Phys. Rev. Lett. Vol.94 (2005), 026101.
[36] J. Irving, J. Kirkwood, 1950, The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics, Journal of Chemical Physics, Vol. 18, pp. 817-829.
[37] J. Haile, 1997, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York.
[38] Rosato V., Guillope M., and Legrand B., Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model, Philosophical Magazine A, Vol.59, pp.321-336, 1989.
[39] Cleri F., and Rosato V., Tight-binding potentials for transition metals and alloys, Physical Review B, Vol.48, pp.22-33, 1993.
[40] Levitt M., Hirshberg M., Sharon R., Laidig K. E., and Daggett V., Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution, J. Phys. Chem. B, .101, 5051(1997).
[41] Dou Y., Zhigilei L. V., Winograd N., and Garrison B. J., Explosive Boiling of Water Films Adjacent to Heated Surfaces: A Microscopic Description Journal of Physical Chemistry A, Vol.105, pp.2748-2755, (2001)
[42] Dou Y., Winograd N., Garrison B. J., and Zhigilei L. V., Substrate-Assisted Laser-Initiated Ejection of Proteins Embedded in Water Films, Journal of Physical Chemistry B, Vol.107, pp.2362-2365, (2003)
[43] M. P. Allen et al, Computer simulation of liquid, Oxford Press, (1994)
[44] W. A. Wallqvist, and O. Teleman, Molecular Physics 74, 515 (1991).
[45] T. I. Mizan et al, Comparison of rigid and flexible simple point charge water models at supercritical conditions ,Journal of Computational Chemistry 17, 1757 (1996)
[46] M. Levitt et al, Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution ,J. Phys. Chem. B 101, 5051 (1997).
[47] J. Bocker et al, Molecular dynamics simulation studies of the mercury-water interface ,Surface Science 335, 372 (1995)
[48] F. Cleri, and V. Rosato, 1993, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B, Vol. 48, Issue. 1, pp. 22-33.
[49] Spohr, Ion adsorption on metal surfaces. The role of water-metal interactions ,J. Mol. Liq. 64, 91 (1995)
[50] J. Haile, 1997, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York.
[51] Rapaport, 1997, The Art of Molecular Dynamics Simulation, Cambridge University Press, London.
[52] J. Goodfellow et al., 1990, Molecular dynamics, CRC Press, Boston.
[53] M. Allen, D. Tildesley, 1991, Computer Simulation of Liquids, Oxford Science, London.
[54] D. Frenkel, B. Smit, 1996, Understanding Molecular Simulation, Academic Press, San Diego.
[55] D. Heermann, 1990, Computer Simulation Method, Springer-Verlag, Berlin
[56] N. Chandra, S. Namilae, and C. Shet, Low-field semiclassical carrier transport in semiconducting carbon nanotubes,Physical Review B 69, 94101 (2004).
[57] N. Tokita, M. Hirabayashi, C. Azuma, T. Dotera, Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation, J. Chem. Phys. 120, 496(2004).
[58] D. Srolovitz, K. Maeda, V. Vitek, T. Egami, Philosophical Magazine A 44, 847-866 (1981).
[59] N. Miyazaki, and Y. Shiozaki, JSME International journal Series A 39,606(1996).
[60] J. Haile, 1997, Molecular Dynamics Simulation: Elementary Methods, John Wiley & Sons, Inc., New York.
[61] D. Rapaport, 1997, The Art of Molecular Dynamics Simulation, Cambridge University Press, London.
[62] Bitsanis and G. Hadziioannou, Molecular dynamics simulations of the structure and dynamics of confined polymer melts, J. Chem. Phys. 92, 3827 (1990).
[63] M.C. Gordillo, J. Marti, Hydrogen bond structure of liquid water confined in nanotubes, Chemical Physics Letters 329 (2000) 341-345
[64] S. Ju, J. Chang, J. Lin, and Y. Lin, The effects of confinement on the behavior of water molecules between parallel Au plates of (001) planes, J. Chem. Phys. 122, 154707 (2005).
[65] P. Cummings, B. Y. Wang, K. J. Fraser and D. J. Evans , Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field , J. Chem. Phys. 94, 2149(1991)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code