Responsive image
博碩士論文 etd-0726106-125353 詳細資訊
Title page for etd-0726106-125353
論文名稱
Title
支援微顆粒可重組運算單元區塊規劃之自動最佳化機制
An automatic optimization mechanism of circuit block partition for Fine-grain Multi-context Reconfigurable Process Unit
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-17
繳交日期
Date of Submission
2006-07-26
關鍵字
Keywords
微顆粒可重組運算單元、佈局、區塊規劃、繞線、電路分割
placement, routing, FMRPU, block partition
統計
Statistics
本論文已被瀏覽 5667 次,被下載 1714
The thesis/dissertation has been browsed 5667 times, has been downloaded 1714 times.
中文摘要
由於現今多媒體通訊系統的高速發展,使得系統的複雜度與規模與日俱增,為了因應日趨複雜的系統之即時運算,除了使用超大型積體電路晶片外,隨著積體電路製造技術的進步,使用可重組運算單元增進即時運算能力也逐漸變得可行。可重組運算單元擁有較低研發製作成本與較快研發時間的特色,並比超大型積體電路晶片具有更多的彈性,更適合在非特定的多媒體通訊系統上取得即時運算的優勢,在我們的微顆粒可重組運算單元(Fine-grain Multi-context Reconfigurable Process Unit, FMRPU)中具有多重組態內容的設計,因此在系統重新組態時可取得較快的重新組態時間,本論文介紹可重組運算單元架構下的電腦輔助設計系統環境,針對區塊分割為基礎的佈局與繞線流程,設計可以根據歷史記錄來提高繞線成功率的自動最佳化機制,並從現今各種佈局與繞線演算法中加入區塊分割的元素,形成以區塊分割為基礎的佈局與繞線工具,將叢集運算加上微顆粒可重組單元硬體架構所產生的限制,便可以在微顆粒可重組單元取得正確的區塊分割,透過不斷增加的歷史記錄,對於可繞線參數上限的評估將會越來越接近實際值,大幅度的確保邏輯區塊分割後的可繞性,減少系統在重覆許多不可繞的運算方面耗費大量時間,在佈局方面以模擬冶煉佈局演算法為基礎修正的成本函數,實驗結果顯示本論文修正的佈局成本函數相較於黃子哲之碩士論文[2]中所提到的成本函數能得到大量的改善結果,不僅僅增加可繞線性,亦節省了許多不必要的繞線耗費,在繞線方面以迷宮繞線為變型產生的延遲與擁擠協調繞線演算法是一個非常適用在多個繞線目標與有限繞線資源的可重組運算單元FMRPU上之方法,透過成本函數與繞線花費的重新定義後,可以正確的運作並獲得較低的電路延遲時間。
Abstract
Due to the rapid development of today’s multimedia communication systems, the complexity and scale of the systems increase day after day. For real-time computing of the systems which become more and more complicated, not only can we use VLSI chips, with the growth of manufacturing techniques of Integrated Circuit, we can apply the Reconfigurable Process Unit to improve real-time computing. Reconfigurable Process Unit is characterized by less cost in research and production as well as less time spent in research and development. Simultaneously, it processes more flexibility than VLSI chips and more suitability in taking advantageous position of real-time computing on an unspecified multimedia communication system. Fine-grain Multi-context Reconfigurable Process Unit has a mechanism of multi-context; therefore, it will take less time when the system reconfigures. This thesis deals with system environment of Computer-Aided Design under the structure of FMRPU, focusing on the placement and routing based on block partition method and designing an automatic optimization mechanism in accordance with historical records to elevate the rate of routable circuit.
With the spirit from various existing algorithm of circuit, we add the factors of block partition, which forms the implements of placement and routing based on block partition. Combined clustering and the limit caused by the hardware structure of FMRRPU, we can have an accurate block partition on FMRPU. Through the continual increase of historical records, the assessment for the upper limit of the argument of routable circuit will get closer to the actual figure. Simultaneously, after the Logic Block Partition, the probability of routable circuit will get great assurance, and the time consumed in lots of repetitious computing on un-routable circuit will decrease. The experimental result reveals that the modified placement cost function can obtain enormous improvement under the comparison with that mentioned the master thesis of Tzu-che Huang. Not only the routability steps up, the unnecessary consumption also reduces largely. In routing, the negotiated congestion-delay algorithm produced on the basis of the transformation of maze routing algorithm has great suitability in the operation on FMRPU, which has many optimization goals and limited routing resource. After the redefinition of the cost function and expenditure for routing, we can operate with accuracy and the time spent on the delayed circuit will decrease.
目次 Table of Contents
摘要
ABSTRACT
目錄
圖目錄
表目錄
第一章 簡介
1-1 可重組運算單元的發展與背景
1-2 FMRPU可重組運算系統
1-3 電腦輔助設計工具流程
1-4 研究動機與目的
第二章 相關研究
2-1 FMRPU與商用FPGA之比較
2-2 邏輯區塊包裝演算法
2-3 模擬冶煉佈局演算法
2-4 繞行演算法
第三章 FMRPU硬體架構
3-1 FMRPU基本組成單元
3-2 FMRPU連接網路
3-3 FMRPU特殊運算單元與函式庫
第四章 區塊規劃與分割
4-1 電腦輔助設計軟體流程
4-2 邏輯基本單位規劃與分割
4-3 邏輯陣列規劃與分割
第五章 區塊配置與繞線
5-1 電路延遲評估演算法
5-2 FMRPU模擬冶煉佈局演算法
5-3 FMRPU延遲與擁擠協調繞行演算法
第六章 系統實現與分析
6-1 區塊規劃與分割之實現
6-2 邏輯陣列區塊規劃可繞線率分析
6-3 邏輯基本單位佈局與繞線之實現
6-4 映射電路
6-5 全域佈局與繞線之實現
第七章 結論與未來目標
參考資料
附錄
參考文獻 References
[1] Ren-Bang Lin, “FMRPU : Design of Fine-grain Multi-context Reconfigurable Processing Unit”, Master thesis, National Sun Yat-sen University, 2004.
[2] Tzu-che Huang, “An Implementation of a Placement and Routing Tool for the Fine-grain Multi-context Reconfigurable Processing Unit”, Master thesis, National Sun Yat-sen University, 2005.
[3] V. Betz, J. Rose, and A. Marquardt, ”Architecture and CAD for Deep-submicron FPGAs,” Kluwer Academic Publishers, 1999.
[4] A. Sangiovanni-Vincentelli, A. El Gamal, and J. Rose, “Synthesis Methods for Field-Programmable Gate Arrays,” Proceedings of the IEEE, July 1993, pp. 1057-1083.
[5] H. Shin and C. Kim, “A Simple Yet Effective Technique for Partition-
ing,” IEEE Trans. On VLSI, Sept. 1993, pp. 380-386.
[6] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “Gordian: VLSI Placement by Quadratic Programming and Slicing Optimization,” IEEE Trans. on CAD, March 1991, pp. 356-365.
[7] A. Dunlop and B. Kernighan, “A Procedure for Placement of Standard-Cell VLSI Circuits,” IEEE Trans. on CAD, Jan. 1985, pp. 92-98.
[8] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by Simulated Annealing,” Science, May 13, 1983, pp. 671-680.
[9] W. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,” IEEE Trans. on CAD, March 1995, pp. 349-359.
[10] C. Ebeling, L. McMurchie, S. A. Hauck and S. Burn, “Placement and Routing Tools for the Triptych FPGA,” IEEE Trans. on VLSI, Dec. 1995, pp. 473-482.
[11] J. S. Rose, “Parallel Global Routing for Standard Cells,” IEEE Trans. on CAD, Oct. 1990, pp. 1085-1095.
[12] S. Brown, J. Rose, Z. G. Vranesic, “A Detailed Router for Field-Programmable Gate Arrays,” IEEE Trans. on CAD, May 1992, pp. 620-628.
[13] R. Nair, “A Simple Yet Effective Technique for Global Wiring,” IEEE Trans. on CAD, March 1987, pp. 165-172.
[14] C. Y. Lee, “An Algorithm for Path Connection and its Applications,” IRE Trans. Electron. Comput., Vol.EC=10, 1961, pp. 346-365.
[15] E. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numer. Math., Vol. 1, 1959, pp. 269-271.
[16] Averill M. Law and W. David Kelton, “Simulation Modeling and Analysis,” McGraw-Hill Companies , Inc, 2000.
[17] M. MORRIS MANO, “DIGITAL DESIGN,” Prentice-Hall, Inc, 2002.
[18] David A. Patterson and John L. Hennessy, “Computer Organization & Design,” Dartmouth Publishers, 1998.
[19] John L. Hennessy & David A. Patterson, “Computer Architecture – A Quantitative Approach,” Morgan Kaufmann Publishers, 2003
[20] Miloš D. ERCEGOVAC and Tomás LANG, “Digital Arithmetic,” Morgan Kaufmann Publishers, 2004.
[21] John P. Uyemura, “Introduction to VLSI Circuits and Systems,” John Wiley & Sons, Inc, 2002.
[22] Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, “Fundamentals of Data Structures in C,” W. H. Freeman and Company, 1998
[23] R. Hitchcock, G. Smith and D. Cheng, “Timing Analysis of Computer-Hardware,” IBM Journal of Research and Development, Jan. 1983, pp. 100-105.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code