Responsive image
博碩士論文 etd-0726106-181345 詳細資訊
Title page for etd-0726106-181345
論文名稱
Title
多感測器環境中具封閉解之最小平方TDOA定位法的效能分析
Performance Analysis of Closed-Form Least-Squares TDOA Location Methods in Multi-Sensor Environments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-26
關鍵字
Keywords
幾何精度稀釋、多感測器、三維、擺設方式、抵達時間差、球面內插法、球面交點法
GDOP, deployments, multi-sensor, 3-D, TDOA, Spherical-Intersection, Spherical-Interpolation
統計
Statistics
本論文已被瀏覽 5653 次,被下載 0
The thesis/dissertation has been browsed 5653 times, has been downloaded 0 times.
中文摘要
在室內環境中,以多感測器定位系統來定位目標物的位置,可於目標物位置之估測上降低成本,然而多感測器的架設方式與架設位置,對整體室內空間之定位效能卻有相當大的影響。本文針對訊號之抵達時間差TDOA(Time Difference of Arrival),使用具封閉解之最小平方定位法,包括球面內插法(Spherical-Interpolation, SI)與球面交點法(Spherical-Intersection, SX),來估測目標物位置。此兩種演算法有別於一般疊代式之非線性極小值的求解過程,然而在受到誤差影響的情況下,會具有不同特性的定位效能;此外,演算法自身的限制,亦為本文所探討的議題。TDOA定位系統,在二維平面空間中的幾何精度稀釋(Geometric Dilution of Precision, GDOP)效應,已顯示誤差對於感測器陣列內外區域之定位效能的影響,本文更進一步推衍三維立體空間的GDOP效應,分析此效應在三維空間的改變趨勢,以符合立體座標估測的需要。
本文最後利用程式模擬,在假設的三維室內空間中,設計可行的感測器陣列組合與目標物的移動高度,模擬狀況顯示感測器陣列的分散程度及其與待定位之目標物的相距程度,並且依據定位模擬結果評估適合於室內目標物的定位演算法,與對定位效能最有利的多感測器陣列擺設方式。
Abstract
In indoor environment, the multi-sensor system has been proved to be an efficient solution for target locating process in terms of lower estimation cost. However, the placement of designed multi-sensor has great impact on the location performance in an indoor environment. Based on the time difference of arrival (TDOA), closed-form least-square location methods, including the spherical-interpolation (SI) and the spherical-intersection (SX) methods, are used in the estimation of target locations. The two methods are apart from the usual process of iterative and nonlinear minimization. Consequently, under the influence of noise interference, the performance of the two methods also produce different results. In addition to the above issues, the limitation of these methods will also be examined. The geometric dilution of precision (GDOP) effects of TDOA location on location performance of both inside and outside of the multi-sensor environment in the 2-D scenario have been studied in the past. This thesis aims to further advance the performance of GDOP in 3-D scenarios, analyze the differences, and propose the suitable needs.
Programmed 3-D scenario simulations are used in this research, designed according to multiple sensor arrays and the moving latitude of a target. The Setup interprets the degree of multi-sensor separation, and distances from targets to the sensor array. A suitable location algorithm and optimal multi-sensor deployments in an indoor environment were proposed according to the simulation results.
目次 Table of Contents
誌謝……………………………………………………………………...i
摘要……………………………………………………………………..ii
Abstract………………………………………………………………...iii
目錄…………………………………………………………………….iv
圖目錄………………………………………………………………….vi
表目錄…………………………………………………………………..x
第一章 緒論…………………………………………………………..1
1.1 研究背景……………………………………………………..1
1.1.1 室內幾何定位…………………………………………..1
1.1.2 無線定位原理之訊號抵達時間差定位法的相關研究..2
1.2 研究動機……………………………………………………..4
1.3 論文架構……………………………………………………..4
第二章 多感測器無線定位法與定位誤差來源……………………..5
2.1 基於時間資訊之多感測器無線定位法...…………………...5
2.1.1 抵達時間定位法………………………..………………6
2.1.2 抵達時間差定位法………………….………………….7
2.2 定位誤差的來源……………………………………………10
2.2.1 抵達時間的量測誤差…………………………………10
2.2.2 非視線環境的影響……………………………………10
2.2.3 幾何精度稀釋(Geometric Dilution of Precision)…..…11
第三章 TDOA定位演算法與GDOP理論值分佈………………….15
3.1 TDOA系統中具封閉解之最小平方定位估測法………..15
3.1.1 球面內插法(Spherical-Interpolation, SI)…………......17
3.1.2 球面交點法(Spherical-Intersection, SX)……………..20
3.1.3 SI與SX在定位演算上的選擇考量….………………22
3.2 TDOA系統中的GDOP理論值分佈……………………...26
3.2.1 二維平面空間定位分佈……………………………...27
3.2.2 三維立體空間趨勢探討……………………………...31
第四章 室內定位模擬及分析………………………………………47
4.1 定位效能優劣的判斷依據…………………………………47
4.2 二維平面空間的定點定位模擬……………………………48
4.2.1 室內定位模擬環境……………………………………48
4.2.2 模擬結果與討論分析…………………………………50
4.3 三維立體空間的定位軌跡模擬……………………………57
4.3.1 室內定位模擬環境……………………………………57
4.3.2 模擬結果與討論分析…………………………………67
第五章 結論與建議…………………………………………………84
參考文獻………………………………………………………………86
參考文獻 References
[1] E. D. Kaplan, Understanding GPS: Principles and Applications, Artech House, March 1996.
[2] J. H. Reed, K. J. Krizman, B. D. Woerner, and T. S. Rappaport, “An overview of the challenges and progress in meeting the e-911 requirement for location service,” IEEE Communications Magazine, vol. 36, pp. 30 - 37, April 1998.
[3] K. Pahlavan, X. Li, and J. P. Makela, “Indoor geolocation science and technology,” IEEE Communications Magazine, vol. 40, pp. 112 - 118, February 2002.
[4] K. Pahlavan, P. Krishnamurthy, and J. Beneat, “Wideband radio channel modeling for indoor geolocation applications,” IEEE Communications Magazine, vol. 36, pp. 60 - 65, April 1998.
[5] P. Krishnamurthy, Analysis and Modeling of the Wideband Radio Channel for Indoor Geolocation Applications. Ph.D. dissertation, Worcester Polytechnic Inst., 1999.
[6] R. Fontana, “Advances in ultra wideband indoor geolocation systems,” 3rd IEEE Wksp. WLAN, Boston, MA, September 2001.
[7] J. Werb and C. Lanzl, “Designing a positioning system for finding things and people indoors,” IEEE Spectrum, vol. 35, pp. 71 - 78, September 1998.
[8] P. M. Janiczek, Global Positioning System. Washington, DC: The Institute of Navigation, 1980.
[9] G. Carter, “Special issue on time delay estimation,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29, June 1981.
[10] B. Friedlander, “On the Cramer-Rao bound for time delay and Doppler estimation,” IEEE Transactions on Information Theory, vol. 30, pp. 575-580, May 1984.
[11] J. P. Van Etten, “Navigation systems: Fundamentals of low and very low frequency hyperbolic techniques,” Electric. Commun., vol. 45, no. 3, pp. 192-212, 1970.
[12] W. R. Hahn, “Optimum processing for passive sonar range and bearing estimation,” Journal of the Acoustical Society of America, vol. 58, no. 1, pp. 201-207, 1975.
[13] M. Wax and T. Kailath, “Optimum localization of multiple sources by passive arrays,' IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 31, pp. 1210-1217, October 1983.
[14] R. O. Schmidt, “A new approach to geometry of range difference location,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-8, pp. 821-835, November 1972.
[15] J. M. Delosme, M. Morf, and B. Friedlander, “A linear equation approach to locating sources from time-difference-of-arrival measurements,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1980.
[16] J. Abel and J. Smith, “The spherical interpolation method for closed-form passive source localization using range difference measurements,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 12, pp. 471-474, April 1987.
[17] H. Schau and A. Robinson, “Passive source localization employing intersecting spherical surfaces from time-of-arrival differences,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, pp. 1223-1225, August 1987.
[18] J. Smith and J. Abel, “Closed-form least-squares source location estimation from range-difference measurements,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, pp. 1661-1669, December 1987.
[19] J. Caffery, Jr. and G. Stuber, “Subscriber location in CDMA cellular networks,” IEEE Transactions on Vehicular Technology, vol. 47, pp. 406-416, May 1998.
[20] M. A. Spirito and A. G. Mattioli, “On the hyperbolic positioning of GSM mobile stations,' in Proc. IEEE International Symposium on Signals, Systems, and Electronics, pp. 173-177, 1998.
[21] M. P. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proc. IEEE International Conference on Universal Personal Communications, vol. 2, pp. 827-831, 1996.
[22] M. Silvetoinen and T. Rantalainen, “Mobile station emergency locationing in GSM,' in Proc. IEEE International Conference on Personal Wireless Communications, pp. 232-238, 1996.
[23] J. Foerster, “Channel modeling sub-committee report final,” IEEE 802.15-02/490rl, February 2003.
[24] R. Schmidt, “Least squares range difference location,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, pp. 234-242, January 1996.
[25] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, pp. 1905-1915, August 1994.
[26] G. Mellen II, M. Pachter, and J. Raquet, “Closed-form solution for determining emitter location using time difference of arrival measurements,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, pp. 1056-1058, July 2003.
[27] N. Levanon, “Lowest GDOP in 2-D scenarios,” Proc. Inst. Elect. Eng., Radar, Sonar Navigation, vol. 147, no. 3, pp. 149-155, 2000.
[28] H. B. Lee, “A novel procedure for assessing the accuracy of hyperbolic multilateration systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 11, pp. 2-15, 1975.
[29] D. J. Torrieri, “Statistical theory of passive location systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 20, pp. 183-198, March 1984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.90.211.141
論文開放下載的時間是 校外不公開

Your IP address is 52.90.211.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code