Responsive image
博碩士論文 etd-0726106-194143 詳細資訊
Title page for etd-0726106-194143
論文名稱
Title
以二氧化鈦薄膜為矽及砷化鎵金氧半結構介電層之特性分析
Characterization of Silicon and Gallium Arsenide MOS Structures with Titanium Oxide as dielectric layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-14
繳交日期
Date of Submission
2006-07-26
關鍵字
Keywords
二氧化鈦、金氧半場效電晶體、有機金屬化學氣相沈積法
MOCVD, MOSFET, TiO2
統計
Statistics
本論文已被瀏覽 5707 次,被下載 1024
The thesis/dissertation has been browsed 5707 times, has been downloaded 1024 times.
中文摘要
利用有機金屬化學氣相沈積(MOCVD)在矽(Si)基板上生長之二氧化鈦(TiO2)薄膜具有高的介電常數,但由於TiO2薄膜是多晶結構,其晶界具有很多缺陷及懸鍵,故其漏電流也非常大,另TiO2有較低的能隙,不易阻擋熱離子發射電流(thermal ionic emission current),也是漏電流非常大的原因之一。
因此利用液相沈積法(Liquid Phase Deposition-LPD)生長SiO2薄膜覆蓋在MOCVD-TiO2/Si上形成LPD-SiO2/MOCVD-TiO2/Si之結構,這將可保有原本MOCVD-TiO2/Si高介電常數之特性,而且由於LPD-SiO2薄膜的高能障和從LPD溶液而來的氟離子可鈍化MOCVD-TiO2薄膜晶界上之懸鍵以及MOCVD-TiO2/Si之間的界面缺陷,在漏電流方面將可大為改善。更進一步,將LPD-SiO2/MOCVD-TiO2/Si結構施以氮氣回火處理,以增強氟在薄膜裡的鈍化效果,可得到具有較高的介電常數、低的介面能態密度,而且有較低之漏電流的LPD-SiO2/MOCVD-TiO2/Si MOS結構。因此,利用經由氟化後的MOCVD-TiO2薄膜做為金氧半場效電晶體(MOSFET)的閘極氧化層可得到較低的漏電流、較小的次臨界斜率、較高的轉導及較高的移動率。
另外,LPD-SiO2/MOCVD-TiO2薄膜生長在經硫化銨處理過後的砷化鎵基板上不但有低的漏電流且有低的介面能態密度,其漏電流在電場正負10 V分別為
2.3×10-7 A/cm2和3.6×10-7A/cm2,其最低的介面能態密度可達到4.7×1011 cm-2eV-1,其介電常數可達到62。因此,LPD-SiO2/MOCVD-TiO2/(NH4)2Sx-treated GaAs是一種具有高介電常數和低漏電流之薄膜結構。此結構對於未來製作GaAs MOSFET當作閘極氧化層相當有潛力。
Abstract
For MOCVD-TiO2/Si MOS structure, oxygen vacancy and grain boundary are the main defects of polycrystalline TiO2 films. They are the main mechanisms for the leakage current. In order to improve the problems, oxygen annealing treatment is often used for filling oxygen vacancies. The electrical characteristics of as-grown MOCVD-TiO2 films can be improved. However, it is from the lattice mismatch between the TiO2 film and Si substrate. In order to release the stress, the TiO2 film will produce a lot of defects and degrade its stoichiometry. Besides, the thermal ionic emission is due to lower conduction band offset between TiO2/Si than that of SiO2/Si. These problems need further improvement.
In order to solve the above mentioned problems, fluorinated liquid phase deposition (LPD) SiO2 deposited upon polycrystalline MOCVD-TiO2/Si. Higher barrier height (Eg = 9 eV) of fluorinated LPD-SiO2 could avoid the thermal ionic emission from lower conduction band offset of TiO2/Si. Moreover, the LPD-SiO2 film can provide fluorine (F-) from the hydrofluosilicic acid (H2SiF6) aqueous solution. Fluorine could passivate grain boundaries of poly-crystalline MOCVD-TiO2 films and interface state density (Dit) of the MOCVD-TiO2/Si interface. The main leakage current of polycrystalline MOCVD-TiO2 films could be .effective to reduce. Furthermore, nitrogen (N2) annealing was used to enhance fluorine passivation of LPD-SiO2/O2-annealed MOCVD-TiO2 films. Therefore, it can be expected that higher dielectric constant and lower leakage current density will be obtained from
LPD-SiO2/O2-annealed MOCVD-TiO2/Si MOS structure. Therefore, MOSFET with fluorinated MOCVD-TiO2 gate oxide can have lower off state leakage current, smaller subthreshold swing, higher transconductance, and higher field effect mobility.
On the other hand, LPD-SiO2/MOCVD-TiO2 film on (NH4)2Sx-treated GaAs not only can lower leakage current but can lower interface state density. The leakage current densities are 2.3×10-7 A/cm2 and 3.6×10-7A/cm2 under positive and negative electric fields at 10V, respectively. The lowest interface state density is 4.7×1011 cm-2eV-1 in the band gap. Moreover, the dielectric constant can reach 62. Therefore, LPD-SiO2/MOCVD-TiO2/(NH4)2Sx-treated GaAs structure is a high dielectric constant and low leakage current film. This structure has high potential for the further development of GaAs MOSFETs.
目次 Table of Contents
CONTENTS

CONTENTS........................................................................................I
LIST OF FIGURES…………………………………………………IV
LIST OF TABLES…………………………………………………..VII
ABSTRACT….………………………………………………………VIII

Chapter 1 1
Introduction 1
1.1 Developments in integrate circuits 1
1.2 Roadmap of the gate dielectric 3
1.3 Properties of TiO2 3
1.4 Comparison of deposition methods of TiO2 5
1.5 Advantages of MOCVD 5
1.6 Motivation of LPD-SiO2/MOCVD-TiO2/Si MOS 6

Chapter 2 14
Experiments 14
2.1 Titanium oxide prepared by MOCVD 14
2.1.1 CVD theorem 14
2.1.2 Deposition system of MOCVD 15
2.1.3 Properties of source materials 16
2.2 Silicon oxide prepared by LPD 17
2.2.1 Deposition system 17
2.2.2 Mechanisms of LPD-SiO2 17
2.2.3 Preparations of deposition solutions 18
2.3 Deposition procedures 19
2.3.1 Si wafer cleaning procedures 19
2.3.2 Aluminum metal cleaning processes 20
2.3.3 Preparations of TiO2 thin films 20
2.3.4 Preparations of SiO2 thin films 20
2.3.5 Fabrication of Metal-Oxide-Semiconductor Structure 21
2.4 Characterization 21
2.4.1 Physical properties 21
2.4.2 Chemical properties 22
2.4.3 Electrical properties 22

Chapter 3 38
Characteristics of silicon MOS structures with titanium oxide as dielectric layer 38
3.1 Fluorine passivation of MOCVD-TiO2 films 38
3.2 The J-E characteristics of LPD-SiO2/MOCVD-TiO2/Si MOS substrates with varied N2 annealing temperature 39
3.3 Mechanisms of leakage current 41
3.3.1 Frenkel-Poole plots for as-grown TiO2 films 41
3.3.2 Space-charge limited plots for O2-ammealed TiO2 films 41
3.3.3 Schottky emission plots of LPD-SiO2/O2-annealed MOCVD-TiO2/Si MOS structure with varied N2 annealing temperature 42
3.4 The C-V characteristics of LPD-SiO2/MOCVD-TiO2/Si
MOS substrates with varied N2 annealing temperature 43
3.5 The C-V hysteresis loops of LPD-SiO2/MOCVD-TiO2/Si
MOS substrates with varied N2 annealing temperature 44
3.6 Interface state densities of LPD-SiO2/MOCVD-TiO2/Si
MOS substrates with varied N2 annealing temperature 45
3.7 Further MOCVD-TiO2/Si after LPD-SiO2 removal MOS
structures 46
3.8 SIMS and ESCA depth profiles of
LPD-SiO2/MOCVD-TiO2 MOS structures 47
3.9 Summary 49

Chapter 4 63
Characteristics of enhancement-mode silicon MOSFET with titanium oxide as gate oxide 63
4.1 Introduction 63
4.2 Fabrication process of enhancement-mode silicon
MOSFET 64
4.3 Electrical characteristics of enhancement-mode silicon
MOSFET with as-grown MOCVD-TiO2 as gate oxide 65
4.4 Electrical characteristics of enhancement-mode silicon
MOSFET with fluorinated MOCVD-TiO2 as gate oxide 66
4.5 Summary 68

Chapter 5 76
Characteristics of gallium arsenide MOS structures 76
5.1 Introduction 76
5.2 Experiments 77
5.2.1 GaAs wafer cleaning procedures 77
5.2.2 Preparations of TiO2 films 77
5.2.3 Preparations of SiO2 films 78
5.2.4 Fabrication of Metal-Oxide-Semiconductor Structure 78
5.3 Characterization of LPD-SiO2/MOCVD-TiO2 flims on
(NH4)2Sx treated GaAs 79
5.3.1 Analysis of Chemical properties 79
5.3.2 Analysis of Electrical properties 80
5.4 Summary 83

CHAPTER 6 92
Conclusions 92

References 94









LIST OF FIGURES

Figure 1-1 Basic characteristics of high-k dielectrics. 8
Figure 1-2 The roadmap of the advance gate dielectric. 9
Figure 1-3 Crystal structures of TiO2 (a) Rutile, (b) Anatase, and (c) Brookite. 10
Figure 1-4 Calculated band offsets of oxides on Si by J. Robertson. 11

Figure 2-1 Steps involved in a CVD process. 27
Figure 2-2 Schematic growth system of MOCVD. 28
Figure 2-3 Vapor pressure curve of Ti(i-OC3H7)4. 29
Figure 2-4 Schematic diagram of liquid phase deposition (LPD) system. 30
Figure 2-5 The growth process of O2-annealed TiO2 films. 31
Figure 2-6 The growth process of LPD-SiO2 films. 32
Figure 2-7 Flowchart of LPD-SiO2/MOCVD-TiO2/Si MOS structure. 33
Figure 2-8 Representation of the C-V curve of an ideal p-type MOS structure. 34
Figure 2-9 (a) Flatband voltage shift due to no charge [curve (a)], injected charge [curve (b)], and mobile charge [curve (c)], (b) C-V curves due to injected charge, (c) C-V curves due to mobile charge, (d) Hysteresis effects visible on high-frequency C-V curves of n-type and p-type MOS structures, with indication of the most likely causes. 35
Figure 2-10 The presence of interface states will induce the stretch-out of high frequency C-V curve. 36

Figure 3-1 (a) Fluorine from LPD-SiO2 process diffuse into polycrystalline TiO2. (b) Fluorine ions displaces oxygen in the Ti-O-Ti bond. (c) The dangling bond on the Ti atom acts as a hole trap in the MOCVD-TiO2 films. 50
Figure 3-2 I-V characteristics of references and LPD-SiO2/O2-annealed MOCVD-TiO2/Si as a function of N2 annealing temperature. 51
Figure 3-3 Frenkel-Poole plots [ln(J/E)) versus E1/2] for as-grown TiO2 films. 52
Figure 3-4 Space-charge limited plots [J1/2 versus E] for O2-ammealed TiO2 films. 53
Figure 3-5 Schottky emission polts [ln(J) versus E1/2] for LPD-SiO2/ O2-annealed MOCVD-TiO2/Si MOS structure with varied N2 annealing temperature 54
Figure 3-6 C-V characteristics of references and LPD-SiO2/O2-annealed MOCVD-TiO2/Si as a function of N2 annealing temperature. 55
Figure 3-7 C-V hysteresis loops of LPD-SiO2/O2-annealed MOCVD-TiO2/Si as a function of N2 annealing temperature. 56
Figure 3-8 Interface state densities of LPD-SiO2/O2-annealed MOCVD-TiO2/Si as a function of N2 annealing temperature. 57
Figure 3-9 The flatband voltages shifts of C-V hysteresis loop and the interface state densities at mid-gap of LPD-SiO2/O2-annealed MOCVD-TiO2/Si as a function of N2 annealing temperature. 58
Figure 3-10 C-V characteristics of O2-annealed MOCVD-TiO2/Si after LPD-SiO2 removal as a function of N2 annealing temperature. 59
Figure 3-11 I-V characteristics of O2-annealed MOCVD-TiO2/Si after LPD-SiO2 removal as a function of N2 annealing temperature. 60
Figure 3-12 SIMS depth profiles of LPD-SiO2/O2-annealed 61
Figure 3-13(a) ESCA depth profiles of LPD-SiO2/O2-annealed MOCVD-TiO2/Si (sputter time = 0 s) (b) ESCA depth profiles of LPD-SiO2/O2-annealed MOCVD-TiO2/Si (sputter time = 200s and 400s ). 62

Figure 4-1 Flowchart of MOSFET fabrication process. 69
Figure 4-2 Id-Vd characteristics of a MOSFET with the as-grown MOCVD-TiO2 as gate oxide. 70
Figure 4-3 Drain current as a function of gate bias for a MOSFET with as-grown MOCVD-TiO2 as gate oxide 71
Figure 4-4 Transconductance as a function of gate bias for a MOSFET with as-grown MOCVD-TiO2 as gate oxide 72
Figure 4-5 Id-Vd characteristics of a MOSFET with fluorinated MOCVD-TiO2 as gate oxide. 73
Figure 4-6 Drain current as a function of gate bias for a MOSFET with fluorinated MOCVD-TiO2 as gate oxide 74
Figure 4-7 Transconductance as a function of gate bias for a MOSFET with fluorinated MOCVD-TiO2 as gate oxide 75

Figure 5-1 ESCA Ti2p depth profile of MOCVD-TiO2 film on GaAs (a) sputter time = 0 s, (b) sputter time = 180 s, and (c) sputter time = 360 s. 84
Figure 5-2 ESCA Ti2p depth profile of LPD-SiO2/MOCVD-TiO2 film on (NH4)2Sx-treated GaAs (a) sputter time = 0 s, (b) sputter time = 180 s, and (c) sputter time = 360 s. 85
Figure 5-3 ESCA depth profiles of LPD-SiO2/MOCVD-TiO2 film on (NH4)2Sx-treated GaAs. 86
Figure 5-4 SIMS depth profiles of LPD-SiO2/MOCVD-TiO2/ (NH4)2Sx- treated GaAs. 87
Figure 5-5 Leakage current densities of different MOS structures 88
Figure 5-6 Capacitance-voltage characteristics of different MOS structures (a)MOCVD-TiO2/GaAs, (b)MOCVD-TiO2 /S-GaAs,(c)LPD-SiO2/MOCVD-TiO2/S-GaAs and (d) LPD-SiO2/MOCVD-TiO2/S-GaAs after LPD-SiO2 removal. 89
Figure 5-7 Interface state density of different MOS structures………....90









LIST OF TABLES

Table 1-1 Comparison of crystal structures of TiO2. 12

Table 1-2 Comparison of deposition methods of TiO2. 13

Table 2-1 Bond energies of various gaseous molecules with N or O atoms. 37

Table 5-1 Electrical parameters of different MOS structures………… ..91
參考文獻 References
References

[1] A. I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics
to silicon dioxide for memory and logic devices,” Nature, vol. 406,
pp. 1032-1038, 2000.
[2] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition
of titanium oxide for microelectronics applications,” J. Mater. Res.,
vol. 16, pp. 1838-1849, 2001.
[3] D. K. Schroder, Semiconductor Material and Device
Characterization, 2nd ed. New York: John Wiley & Sons, INC., Ch. 6, 1998.
[4] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical
vapor deposition of TiO2 in microwave-radio frequency hybrid plasma
reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[5] G. V. Samsonov, The Oxide Handbook. New York: IFI/Plenum, p.
316, 1973.
[6] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G.
Schmid, “Structural and electrical characterization of TiO2 grown
from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,”
J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[7] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical
solar-energy conversion,” J. Mater. Sci., vol. 15, pp. 1-19, 1980.
[8] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using
V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J.
Phys. Chem., vol. 90, pp. 5896-5900, 1986.
[9] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical
characterization of SiO2-TiO2 thin-films with graded refractive-index
profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[10] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon
plasma deposition of a TiO2/SiO2 multilayer optical filter with
graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp.
3264-3266, 1998.
[11] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of
SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J.
Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[12] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa,
“A coumarin-derivative dye-sensitized nanocrystalline TiO2
solar-cell having a high solar-energy conversion efficiency up to
5.6-percent,” Chem. Commun., pp. 569-570, 2001.
[13] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and
M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2
planar optical wave-guides,” Thin Solid Films, vol. 323, pp. 59-62,
1998.
[14] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[15] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of
three phases of titanium-dioxide - rutile, anatase and brookite,”
Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[16] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of
thermally induced anatase-to-rutile phase transition in
MOCVD-grown TiO2 films on structural and optical properties,”
Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[17] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2
surfaces - principles, mechanisms, and selected results,” Chem. Rev.,
vol. 95, pp. 735-758, 1995.
[18] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[19] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of
titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[20] G. S. Brady, and H. R. Clauser, Materials Handbook, 13th ed. New
York: McGraw-Hill, 1991.
[21] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of
the potential distribution in porous nanocrystalline TiO2 electrodes
by electrolyte electroreflection,” J. Electroanalytical Chem., vol.
428, pp. 25-32, 1997.
[22] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S.
Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate
insulator,” Thin Solid Films, vol. 424, pp.224-228, 2003.
[23] National Institute of Standards and Technology, Phase Equilibrium
Diagrams, ver.2.1, The American Ceramic Society, Westerville,
1998, Fig. 4258.
[24] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical
phase transformation of TiO2 by EPR effect of phosphate,” Solid
State Ionics, vol. 32, pp. 461-465, 1989.
[25] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., vol. 48, p. 391,
1965.
[26] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of
titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,”
Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[27] O. Harizanov, and A. Harizanova, “Development and investigation
of sol–gel solutions for the formation of TiO2 coatings,” Sol. Energy
Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[28] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium
dioxide thin films on platinum substrates: preparation and
characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57,
2003.
[29] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and
characterization of sol-gel TiO2 antireflective coatings for silicon,”
Thin Solid Films, vol. 391, pp. 133-137, 2001.
[30] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri,
“TiO2 thin films by a novel sol–gel processing for gas sensor
applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[31] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the
composition of titanium oxide films produced by evaporation of
Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[32] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B.
Samsetc, “Density and refractive index of TiO2 films prepared by
reactive evaporation,” Thin Solid Films, vol. 371, pp. 218-224, 2000.
[33] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology
and electrical properties of titanium oxide nanometric multilayers
deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151,
pp. 51-54, 2002.
[34] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial
pressures on structure of photocatalytic TiO2 films sputtered on
unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[35] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on
photocatalytic activity and transmittance spectra of TiO2 thin-films
prepared by R.F. magnetron sputtering method,” Surf. Coat.
Technol., vol. 155, pp. 141-145, 2002.
[36] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of
SiO2 and TiO2 thin films by plasma enhanced chemical vapor
deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216,
pp. 77-82, 1997.
[37] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and
G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of
growth temperature and plasma gas composition,” Thin Solid Films,
vol. 371, pp. 126-131, 2000.
[38] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U.
Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of
titanium-oxide films obtained by PECVD,” Surf. Coat. Technol.,
vol. 126, pp. 123-130, 2000.
[39] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of
TiO2 films prepared by low-pressure and plasma enhanced chemical
vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[40] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H.
Naramoto, “Characterization of epitaxial TiO2 films prepared by
pulsed laser deposition,” Thin Solid Films, vol. 401, pp. 88-93, 2001.
[41] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H.
Itoh, “Preparation of anatase and rutile thin-films by controlling
oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292,
2002.
[42] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T.
Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A.
K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,”
Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[43] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth
of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp.
47-51, 2001.
[44] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T.
Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice
deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[45] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of
TiO2 thin-films on InP substrate prepared by liquid-phase
deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[46] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide films
prepared by liquid-phase deposition using hexafluorotitanic acid,”
Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[47] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2
films prepared by liquid-phase deposition,” Thin Solid Films, vol.
371, pp. 148-152, 2000.
[48] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot,
and M. Sacilotti, “SEM and XPS studies of titanium-dioxide
thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp.
63-67, 1998.
[49] S. C. Sun, and T. F. Chen, “Effects of electrode materials and
annealing ambient on the electrical-properties of TiO2 thin-films by
metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol.
36, pp. 1346-1350, 1997.
[50] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K.
Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of
TiO2 thin-films on Si(100) and Si(111) substrates using single
molecular precursor by high-vacuum MOCVD and comparison of
growth-behavior and structural-properties,” J. Cryst. Growth, vol.
235, pp. 450-456, 2002.
[51] M. K. Lee, J. J. Huang, and T. S. Wu, “Electrical characteristics
improvement of oxygen-annealed MOCVD-TiO2 films,” Semicond.
Sci. Technol., vol. 20, pp. 519-523, 2005.
[52] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers,
“Interface control in the chemical-vapor-deposition of
titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp.
766-771, 2000.
[53] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on
Si(100) substrates using single molecular precursors by
metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol.
131, pp. 88-92, 2000.
[54] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee and H. J. Jung,
“Metalorganic chemical-vapor-deposition of TiO2-N anatase
thin-film on Si substrate,” Appl. Phys. Lett., vol. 66, pp. 815-821,
1995.
[55] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa, and M. Persin,
“Raman-spectroscopy of thermally annealed TiO2 thin films,” Thin
Solid Films, vol. 198, pp. 199-205, 1991.
[56] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage
current and electrical breakdown in metal-organic
chemical-vapor-deposited TiO2 dielectrics on silicon substrates,”
Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[57] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim,
W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated
with high permittivity TiO2 dielectrics,” IEEE Trans. Electron
Devices, vol. 44, pp. 104-109, 1997.
[58] G. Stringfellow, Theory and Practice, Academic Press, Boston, 1989.
[59] J. Robertson, “Electronic structure and band offsets of high dielectric
constant gate oxides,” MRS Bulletin, p. 217, 2002.
[60] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon
VLSI Technol., p. 512, 2000.
[61] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee,
D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin
films on Si grown by metalorganic chemical vapor deposition,” J.
Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[62] W. S. Lau, P. W. Qian, N. P. Sandler, K. A. Mckinley, and P. K. Chu,
“Evidence that N2O is a stronger oxidizing-agent than O2 for the
postdeposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl.
Phys., vol. 36, pp. 661-666, 1997.
[63] H. Nagayama, H. Honda, and H. Kawahara, “A new process for
silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013, 1989.
[64] L. M. Terman, “An investigation of surface states at a silicon/silicon
oxide interface employing metal-oxide-silicon diodes,” Solid-State
Electron., vol. 5, pp. 285-299, 1962.
[65] D. K. Schroder, Semiconductor Material and Device Characterization, pp. 378, New York: Wiley, 1998.
[66] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Ch. 8, 9, New York: Wiley, 2003.
[67] C. T. Sah, A. B. Tole and R. F. Pierret, “Error analysis of surface
state density determination using the MOS capacitance method,” Solid-State Electron., vol. 12, pp. 689-709, Sep. 1969.
[68] H. N. Chen, C. L. Lee and T. F. Lei, “The effects of fluorine passivation on polysilicon thin-filmtransistors,” IEEE Trans. Electron Device, vol. ED-41 pp. 698-702, 1994.
[69] J. W. Park, B. T. Ahn and K. Lee, “Effects of F+ Implantation on the Characteristics of Poly-Si Films and Low-Temperature n-ch Poly-Si Thin-Film Transistors, ” Jpn. J. Appl. Phys. vol. 34, pp. 1436-1441, 1995.
[70] S. M. Sze, Physics of Semiconductor Devices second edition, Chap. 7, Wiley, New York, 1981.
[71] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003.
[72] H. D. Fuchs, M. Stutzman, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerd, P. Deak, and M. Cardona, “Porous silicon and siloxene: Vibrational and structural properties,” Phys. Rev. B, vol. 48, pp. 8172-8189, 1993.
[73] M.G. Hussein, K. Wörhoff, C.G.H. Roeloffzen, L.T.H. Hilderink, R.M. de Ridder and A. Driessen, “Characterization of thermally treated PECVD SiON layers,” Department of Electrical Engineering and Applied Physics, University of Twente.
[74] Y. Nakano, T. Jimbo, “Interface properties of thermally oxidized n-GaN metal-oxide-semiconductor capacitorsin,” Appl. Phys. Lett., vol. 82, No. 2, 2003.
[75] D. K. Schroder, Semiconductor Material and Device Characterization, p 362-365, Wiley, New York, 1998.
[76] S. R. Kasi, M. Liehr, and S. Cohen, “Chemistry of fluorine in the oxidation of silicon,” Appl. Phys. Lett., vol. 58, No. 25, 1991.
[77] S. C. Sun, and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxidized silicon surfaces,” IEEE Trans. Electron Devices, vol. 27, pp. 1497-1508, 1980.
[78] Xiaohua Liu, X. Y. Chen, J. Yin, Z. G. Liu, X. B. Yin, G. X. Chen,
and M. Wang, “Epitaxial growth of TiO2 thin films by pulsed laser deposition on GaAs(100) substrates,” J. Vac. Sci. & Technol. A., Vol. 19, no.2, pp. 391-393, Mar. 2001.
[79] Y. K. Han, T. G. Lee, S. S. Yom, M. H. Son, E. K. Kim, S. K. Min,
and J. Y. Lee, “Comparison between TiO2 thin films on InP and
GaAs substrate by metalorganic chemical vapor deposition,” J. Kor.
Phys. Soc., vol. 32, pp. 1697-1699, 1998.
[80] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical
vapor deposition of TiO2 in microwave-radio frequency hybrid
plasma reactor,” J. Vac. Sci. & Technol. A., vol. 13, no. 3, pp. 596-601, May 1995.
[81] K. Vydianathan, G. Nuesca, G. Peterson, E. T. Eisenbraun, A. E.
Kaloyeros, J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics application,” J. Mater. Res., vol. 16, pp. 1838-1849, 2001
[82] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Ch. 8, Wiley,
New York, 1981.
[83] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy,
“Electrical and optical properties of TiO2 anatase thin films,” J. Appl. Phys., vol. 75, no. 4, pp. 2042-2047, Feb. 1994.
[84] R. Lyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of
phosphorous and sulfur treatment on the surface properties of InP,” J. Vac. Sci. & Technol. B., vol. 6, no. 4, pp. 1174-1179, Jul. 1988.
[85] H. El Omari, J. P. Boyeaux, A. Errkik, M. Lemiti, and A. Laugier,
“Effect of TiOx on the formation of titanium silicide layer,” J. Appl.
Phys., vol. 93, pp. 9803-9811, 2003.
[86] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[87] K. K. Eun, H. S. Maeng, S. K. Min, Y. K. Han, C. H. Wang, and S. S.
Yom, “Postgrowth annealing effects of TiO2 thin films grown on InP
substrate at low-temperature by metal-organic chemical-vapor
deposition,” J. Appl. Phys., vol. 79, pp. 4459-4461, 1996.
[88] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. Technol. A., vol. 12, no. 5, pp. 2701-2704, Sept. 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code