Responsive image
博碩士論文 etd-0726106-203550 詳細資訊
Title page for etd-0726106-203550
論文名稱
Title
高效率摻鐿釔鋁石榴石環形雷射
Efficient Yb:YAG ring laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-26
關鍵字
Keywords
斜率效率、環形雷射、晶體光纖、準三能階、雷射、摻鐿釔鋁石榴石
slope efficiency, Yb:YAG, quasi-three-level, crystal fiber, ring laser, laser
統計
Statistics
本論文已被瀏覽 5693 次,被下載 3802
The thesis/dissertation has been browsed 5693 times, has been downloaded 3802 times.
中文摘要
相對Nd:YAG常用於傳統高功率固態雷射作為增益介質,Yb:YAG具有較小的量子缺陷,較寬的吸收、輻射頻寬,較長的自發輻射生命期,使用在Q開關雷射中可累積更多的能量。此外,Yb:YAG可摻雜較高的離子濃度,增益介質的長度可以減小,進而減少光路的偏移量及環形共振腔內穩定性的破壞,使得Yb:YAG晶體更適合用在雙鏡式環形共振腔雷射系統中。

由於Yb:YAG屬於準三能階雷射,因熱效應所產生的重複吸收損耗是影響準三能階雷射輸出功率的重要因素,此效應會降低雷射的斜率效率,故本實驗目的在改善原有架構的散熱效率,以及改變增益介質長度,配合上不同迴圈穿透率的耦合透鏡,將雷射的斜率效率提升至50.3 %。本論文並嘗試以銅鋁包覆Yb:YAG晶體光纖,與原有的雙鏡式環形共振腔結合成新的架構,故有關Yb:YAG晶纖之製程與雷射元件之機械製備和其光學鍍膜設計等在本文中將作詳細說明,並且介紹Yb:YAG晶纖環形雷射的實驗成果。

此外,本實驗使用數值分析中的有限時域差分法來解析Yb:YAG環形被動式Q-開關雷射的速率方程式,模擬Q-開關雷射的重複頻率、脈衝寬度、脈衝峰值功率,希望藉此掌握各個影響雷射性能的重要參數,以最佳化雷射的效率。
Abstract
Though Nd:YAG has been widely used as the traditional high power solid-state laser gain medium, Yb:YAG has more advantages such as lower quantum defect, wider absorption and emission bandwidth, and longer fluorescence lifetime, which can be used in Q-switched lasers to storage more energy. In addition, a higher doping concentration Yb:YAG with thinner thickness reduces the shift of optical path, which reduces the ring cavity stability. Therefore Yb:YAG is an eminently suitable gain medium for the two-mirror ring laser.
Due to the quasi-three-level characteristic of Yb:YAG, the thermal effect influences the re-absorption loss and deteriorates the laser performance, i.e. lower slope efficiency of laser. In this thesis, we improve the laser efficiency by using Yb:YAG crystal with proper thickness, and various round-trip transmittances with different output couplers were tried. The slope efficiency with 50.3 % has been achieved. We also tried to reduce the thermal loading of Yb:YAG by crystal fiber with Cu-Al alloy package. The fabrication process of Yb:YAG crystal fiber, including sample preparation, and coating design, and the experiment result of Yb:YAG crystal fiber ring laser will be presented in detail.
Furthermore, we use numerical analysis to modify the passively Q-switched Yb:YAG ring laser rate equation with FDTD (finite difference time domain) method. The simulated repetition rate, pulse width and peak power were compared to the experimental results in order to optimaize laser performance.
目次 Table of Contents
目錄

中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii

第一章 緒論 1
第二章 Yb:YAG環形雷射原理 3
2.1 雙鏡式環形共振腔再入射條件 3
2.2 增益介質Yb:YAG 9
第三章 Yb:YAG環形雷射 17
3.1 雷射架構 17
3.2 雷射效率提升 18
3.2.1 溫度影響 18
3.2.2 迴圈穿透率的影響 25
3.2.3 增益介質長度的影響 29
3.3 Yb:YAG 環形雷射實驗結果 30
第四章 Yb:YAG晶體光纖環形雷射 33
4.1 晶體光纖製備 33
4.1.1雷射加熱基座生長法 33
4.1.2銅鋁合金包覆及研磨、拋光 37
4.1.3 光學鍍膜 43
4.2 雷射架構與實驗結果 45
第五章 被動式Q開關Yb:YAG環形雷射數值模擬 49
5.1 理論模型 49
5.2 實驗結果與分析 56
第六章 結論 59

參考文獻 61
中英對照表 64
附錄 A : 被動式Q開關Yb:YAG環形雷射數值模擬 66
附錄 B : Yb:YAG碟形雷射(Thin disk laser) 73
參考文獻 References
[1] 陳穎慧,“多次再入射之雙鏡式環形共振腔雷射的研 究”,國立中山大學光電工程研究所碩士論文,(2001)。
[2] S. L. Huang, Y. H. Chen, P. L. Huang, J. Y. Yi, and H. Z. Cheng, “Multi-reentrant nonplanar ring laser cavity,” IEEE Journal of Quantum Electronics 38, 1301 (2002).
[3] T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Optics Letters 27, 1791 (2002).
[4] T. Dascalu, N. Pavel, and T. Taira, “90 W continuous-wave diode edge-pumped microchip composite Yb:Y3Al5O12 laser,” Applied Physics Letters 83, 4086 (2003).
[5] D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Optics Letters 29, 2154 (2004).
[6] Z. Huang, Y. Huang, M. Huang, and Z. Luo, “Optimizing the doping concentration and the crystal thickness in Yb3+-doped microchip lasers,” Journal of the Optical Society of America B 20, 2061 (2003).
[7] W. F. Krupke, “Ytterbium solid-state lasers-The first decade,” IEEE Journal on Selected Topics in Quantum Electronics 6, 1287 (2000).
[8] T. Kasamatsu, H. Sekita, and Y. Kuwano, “Temperature dependence and optimization of 970-nm diode-pumped Yb:YAG and Yb:LuAG lasers,” Applied Optics 38, 5149 (1999).
[9] F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE Journal of Quantum Electronics 37, 135 (2001).
[10] J. Dong, M. Bass, Y. Mao, P. Deng, and D. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” Journal of the Optical Society of America B 20, 1975 (2003).
[11] S. Uemura and K. Torizuka, “Center-wavelength-shifted passively mode-locked diode-pumped ytterbium(Yb): Yttrium aluminum garnet (YAG) laser,” Japanese Journal of Applied Physics 44, L361 (2005).
[12] U. Brauch, A. Giesen, M. Karszewski, Chr. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Optics Letters 20, 713 (1995).
[13] G. A. Bogomolova, D. N. Vylegzhanin, and A. A. Kaminskii, “Spectral and lasing investigations of garnets with Yb3+ ions,” Soviet Physics JETP 42, 440 (1975).
[14] P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Optics Letters 16, 1089 (1991).
[15] T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Optics Letters 19, 554 (1994).
[16] T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Applied Optics 36, 1867 (1997).
[17] E. Innerhofer, T. Sdmeyer, F. Brunner, R. Hring, A. Aschwanden, R. Paschotta, C. Hnninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Optics Letters 28, 367 (2003).
[18] Q. Liu, M. Gong, F. Lu, W. Gong, and C. Li, “520-W continuous-wave diode corner-pumped composite Yb:YAG slab laser,” Optics Letters 30, 726 (2005).
[19] http://www.americool.com/
[20] http://www.melcor.com/
[21] C. Goutaoudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli, and E. Cavalli, “LHPG and flux growth of various Nd:YVO4 single crystals: A comparative characterization,” Materials Research Bulletin 33, 1457 (1998).
[22] http://www.struers.com
[23] W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” Journal of the Optical Society of America B 5, 1412 (1988).
[24] T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd:YAG laser,” IEEE Journal Quantum Electronics 23, 605 (1987).
[25] X. Zhang, S. Zhao, O. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE Journal Quantum Electronics 33, 2286 (1997).
[26] J. Liu and D. Kim, “Optimization of intracavity doubled passively Q-switched solid-state lasers,” IEEE Journal Quantum Electronics 35, 1724 (1999).
[27] G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, “ Z-scan measurement of the ground and excited state absorption cross section of Cr4+ in yttrium aluminum garnets,” IEEE Journal Quantum Electronics 35, 1086 (1999).
[28] C. W. Wang, Y. L. Weng, P. L. Huang, H. Z. Cheng, and S. L. Huang, “Passively Q-switched quasi-three level laser and its intracavity frequency doubling,” Applied Optics 41, 1075 (2001).
[29] C. F. Gerald, “Applied Numerical Analysis,” 2nd ed. Wesley, ch. 8 (1992).
[30] 王君偉,”準三能階被動式Q開關藍光雷射的研究”,國立中山大學光電工程研究所碩士論文 (2001)。
[31] C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, “A 1-kW CW thin disc laser,” IEEE Journal Quantum Electronics 6, 650 (2000).
[32] W. Koechner, Solid-State Laser Engineering (Springer-Verlag,Berlin, 1999)
[33] 黃碧鈴,”雙球面鏡之多次再入射環形共振腔雷射之研究及應用”,國立中山大學光電工程研究所博士論文,(2003)。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code