Responsive image
博碩士論文 etd-0726107-164257 詳細資訊
Title page for etd-0726107-164257
論文名稱
Title
以液相沉積法備製鈦矽氧化膜之特性分析
Characterization of Titanium Silicon Oxide Prepared by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
117
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-06
繳交日期
Date of Submission
2007-07-26
關鍵字
Keywords
金屬化熱處理、氨水、液相沉積法、鈦矽氧化膜
LPD, NH4OH, Titanium Silicon Oxide, PMA
統計
Statistics
本論文已被瀏覽 5718 次,被下載 7
The thesis/dissertation has been browsed 5718 times, has been downloaded 7 times.
中文摘要
隨著顯示器逐漸增大,其電阻、寄生電容所造成時間延遲的現象,將會變的更加顯著。而使用高介電值材料在薄膜電晶體上,可以提高閘極氧化層的電容值,以獲得一個較高的汲極電流來解決面板變大所造成的問題,並且可增加面板的開口率。
在本實驗中,我們利用液相沉積法(LPD)在非晶矽及多晶矽基板上成長鈦矽氧化薄膜,並在成長溶液中加入氨水來控制PH值及防止HF的過度蝕刻。
在物性與化性方面,我們利用掃描式電子顯微(SEM)、反射式光譜儀、傅立葉紅外線光譜儀(FTIR)與X光繞射儀(XRD)分析,並製作MOS之電容結構以量測其介電特性,並針對鈦矽氧化膜之漏電流密度與介電常數等與製程參數之關係加以研究探討。此外,在經由氧氣與氮氣回火處理後漏電流也有顯著的改善。然而,在金屬化熱處理後,可以再更進一步地改善電性。
金屬化熱處理是一種利用氧化層表面的氫氧根(OH-)和披覆金屬層(Al)反應而產生活性氫原子,此活性氫原子可擴散進入到鈦矽氧化膜裡,進而鈍化膜裡的缺陷及懸鍵。因此,可在維持高介電常數的條件下降低漏電流。
Abstract
When the size of display panel increased, the RC delay of TFTs became serious.In order to solve this problem, it is necessary to incorporate a high dielectric (high-k) material used as the gate oxide can increase the gate oxide capacitance Co, which can induce a higher drain current and higher aperture ratio.
In this study, titanium silicon oxide films were grown on amorphous silicon and poly-crystal silicon by liquid phase deposition, the addition of NH4OH in the growth solution can control the PH value and prevent the amorphous and poly-crystalline silicon over etching by HF.
The physical and chemical properties of titanium silicon oxide film by means of several measuring instruments, including Fourier transform infrared spectrometer (FTIR), and X-Ray diffractometer (XRD). An Al/titanium silicon oxide/a-Si or poly-Si/Si metal-oxide-semiconductor (MOS) capacitor structure was used for the electrical measurements. After oxygen and nitrogen annealing, the leakage current is improved due to the reduction of the oxygen vacancy of titanium silicon oxide film. However, the electrical characteristics can be further improved by the postmetallization annealing treatment especially under the negative electric field.
Post-metallization annealing (PMA) is to use the reaction between the aluminum contact and hydroxyl groups existed on oxide surface to form active hydrogen and diffuse through the oxide to passivate the oxide traps. Therefore, titanium silicon oxide
film which treated by PMA with higher dielectric constant and lower leakage current can be obtained.
目次 Table of Contents
CONTENTS
ACKNOWLEDGMENT..........................................................I
ABSTRACT............................................................................II
LIST OF FIGURES ...........................................................VIII
LIST OF TABLES................................................................XII
CHAPTER1 1
INTRODUCTION 1
1-1 Background 1
1-2 Liquid Crystal Drive Schemes 2
1-2-1 PassiveMatrix 2
1-2-2 Active Matrix 3
1-3 Comparison between a-Si and poly-Si TFT 3
1-4 Development of a-Si and poly-Si TFT 4
1-5 High Dielectric Constant Materials 5
1-6 Various Techniques for TixSi(1-x)O Film Preparation 6
1-7 Advantages of Liquid Phase Deposition 7
REFERENCES 12
CHAPTER2 16
EXPERIMENT 16
2-1 Deposition System 16
2-2 Cleaning of Silicon Substrate 17
2-3 Preparation of Deposition Solution 18
2-4 Film Deposition 19
2-5 Growth Mechanisms of LPD-TixSi(1-x)Oy Films 20
2-6 Improvements of Electrical Properties 21
2-6-1 Annealing LPD-TixSi(1-x)Oy Films in N2 and O2 Ambient 21
2-6-2 Motivation of TixSi(1-x)Oy/a-Si/Si and TixSi(1-x)Oy/poly-Si/Si 22
2-6-2.1 Aluminum Metal Cleaning Processes 22
2-6-2.2 PMA Procedure 22
2-6-3 Improvement of J-E Characteristics of LPD-TixSi(1-x)Oy Films on poly-Si and a-Si with a SiO2 Buffer Layer 23
2-7 Characteristics 24
2-7-1 Physical Properties 24
2-7-2 Chemical Properties 24
2-7-3 Electrical Properties24
REFERENCES 32
CHAPTER3 33
RESULTS AND DISCUSSION 33
PART I: LPD-TixSi(1-x)Oy Films on a-Si/p-type substrate 34
3-1 Characteristics of LPD-TixSi(1-x)Oy Films on a-Si with Increase Volume of NH4OH 34
3-2 Characteristics of LPD-TixSi(1-x)Oy Films on a-Si with Decrease Volume of H3BO3 35
3-2-1 FE-SEM Views of LPD-TixSi(1-x)Oy Films on a-Si 36
3-2-2 Thickness of LPD-TixSi(1-x)Oy Films on a-Si as a Function of Deposition Time 37
3-2-3 ESCA Analysis of LPD-TixSi(1-x)Oy Film on a-Si 38
3-3 Improvements of Electrical Properties on a-Si 38
3-3-1 Annealing LPD-TixSi(1-x)Oy films in N2 and O2 ambient on a-Si 39
3-3-1.1 X-ray Diffraction Pattern of LPD-TixSi(1-x)Oy Films on a-Si by Annealing in N2 Ambient 39
3-3-1.2 J-E & C-V Characteristics of LPD-TixSi(1-x)Oy films on a-Si 40
3-3-1.3 FTIR Spectra of O2-annealed Thin Films on a-Si 41
3-3-1.4 XPS Spectra of as-grown and N2-annealed of LPD-TixSi(1-x)Oy Films on a-Si 42
3-3-2 Characteristics of LPD-TixSi(1-x)Oy films on a-Si by Post-metallization Annealing (PMA) 43
3-3-2.1 Motivation of TixSi(1-x)Oy/a-Si/Si with PMA Treatment 43
3-3-2.2 J-E & C-V Characteristics of PMA Temperature on a-Si 45
3-3-3 Improvement of J-E Characteristics of LPD-TixSi(1-x)Oy Films on a-Si with a SiO2 BufferLayer 46
PART II: LPD-TixSi(1-x)Oy films on poly-Si/p-type substrate 47
3-4 Characteristics of LPD-TixSi(1-x)Oy Films on poly-Si with Increase Volume of NH4OH 47
3-5 Characteristics of LPD-TixSi(1-x)Oy Films on poly-Si with Decrease Volume of H3BO3 48
3-5-1 FE-SEM Views of LPD-TixSi(1-x)Oy Films on poly-Si 49
3-5-2 Thickness of LPD-TixSi(1-x)Oy Films on poly-Si as a Function of Deposition Time 50
3-5-3 ESCA Analysis of LPD-TixSi(1-x)Oy Film on poly-Si 50
3-6 Improvements of Electrical Properties on poly-Si 51
3-6-1 Annealing LPD-TixSi(1-x)Oy films in N2 and O2 Ambient on poly-Si 51
3-6-1.1 X-ray Diffraction Pattern of LPD-TixSi(1-x)Oy Films on poly-Si by Annealing in N2 Ambient 52
3-6-1.2 SIMS Depth Profile of LPD-TixSi(1-x)Oy Film on poly-Si 52
3-6-1.3 J-E & C-V Characteristics of LPD-TixSi(1-x)O films on poly-Si 53
3-6-1.4 FTIR Spectra of O2-annealed Thin Films on poly-Si 54
3-6-2 C-V & J-E Characteristics of PMA Temperature on poly-Si 55
3-6-3 Improvement of J-E Characteristics of LPD-TixSi(1-x)Oy Films on poly-Si with a SiO2 Buffer Layer 56
REFERENCES 96
CHAPTER 4 100
CONCLUSIONS 100
參考文獻 References
References(chap.1)
[1] T. Yamazaki, H. Kawakami, and H. hori, Color TFT liquid crystal displays, Chap.1, 1996. (SEMI Stand FPD Technology Group)
[2] T. Yamazaki, H. Kawakami, and H. hori, Color TFT liquid crystal displays, Chap.2, 1996. (SEMI Stand FPD Technology Group)
[3] M. Ikeda, M. Ogawa, K Suzuki. in Proc. Japan Display 498, 1989.
[4] J. H. Lan, J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin film transistors for AM-LCDs,” IEEE electron Device Lett, vol. 20, pp. 129-131, 1999.
[5] S. Sivoththaman, R. Jeyakumar, L. Ren. A. J. Nathan, “Characterization of low permittivity (low-k) polymeric dielectric films for low temperature device integration” Vac. Sci. Technol. A, vol. 20, pp. 1149-1153, 2002.
[6] O. Auciello, W. Fan, B. Kabius, S. Saha, J. A. Carlisle, R. P. H. Chang, C. Lopez, E. A. Lrene and R. A. Baragiola,“Hybrid. titanium-aluminum oxide layer as alternative high-k gate dielectric for the next generation of complementary metal-oxide-semiconductor devices,” Appl. Phys. Lett, vol. 86. pp. 042904, 2005.
[7] W. Benzarti., F. Plais, A. De Luca, D. Pribat “Compact analytical physical-based model of LTPS TFT for active matrix” Electron Devices, IEEE Transactions, vol. 51, pp. 345-350, 2004.
References(chap.2)
[1] Raymond Chang, “Chapter 4: 4.4 Concentration and Dilution of Solutions,” Chemisty (fifth edition), p. 136, McGraw-Hill, New York, 1994.
[2] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi, and J. Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium films on silicon,” Appl. Phys. Lett., vol. 74, pp. 3143-3145, 1999.
References(chap.3)
[1] Tsung-Shium Wu, “High Dielectric Constant and Low leakage Current TiO2 Thin Films on Silicon”, 2004.
[2] J. S. Chou and S. C. Lee, “The Initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition”, J. Electrochem. Soc., Vol.141, pp.3214, 1994.
[3] Jia-Ming Yu, “Preparation of silicon titanium oxide based on hexafluorotitanic acid for next generation gate oxide”, 2004.
[4] J. Muto, H. Nagahama, and T. Hashimoto, “Microinfrared reflection spectroscopic mapping: application to the detection of hydrogen-related species in natural quartz,” Journal of Microscopy, vol. 216, no. 3, pp. 222-228, 2004.
[5] P. Madhu Kumar, S. Badrinarayanan, and Murali Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Vol. 358, no. 1-2 , pp. 122-13010, 2000.
[6] P. Czuprynski and O. Joubert, “X-ray photoelectron spectroscopy analyses of silicon dioxide contact holes etched in a magnetically enhanced reactive ion etching reactor,” J. Vac. Sci. Technol. B, vol. 16, no. 3, pp. 1051-1058, 1998.
[7] Deok-Yong Cho, Kee-Shik Park, B.-H. Choi, S.-J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, Ranju Jung and Jae-Cheol Lee, “Control of silicidation in HfO2/Si(100) interface,” Appl. Phys. Lett., vol. 86, p 041913, 2005.
[8] Feng Zhang, S. Jim, Yingjun Mao, Zhihong Zheng, Yu Chen and Xianghuai Liu, “Surface characterization of titanium oxide films synthesized by ion beam enhanced deposition,” Thin Solid Films, vol. 310, pp. 29-33. 1997.
[9] C H Hwang, K Cho, Y Takagi and K Kawamura, “An XPS study of amorphous and crystalline Cu50Ti50 alloy,” J. Phys. C: Solid State Phy., Vol. 18, pp. 2575-2582, 1985
[10] N. Rausch and E. P. Burte, Engineering, vol. 19, 725, 1992.
[11] W. D. Brown and W. W. Grannemann, “C-V Characteristics of Metal-Titanium Dioxide-Silicon Capacitors,” Solid-State Electron., vol. 21, pp. 837-846, 1978.
[12] D. M. Shang and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[13] D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter, and J. Yan, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[14] P. Balk, in Proceedings of the Electrochemical Society Fall Meeting (Electrochemical Society, Buffalo, NY,1965), p.29.
[15] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing”, J. Appl. Phys., 63, pp. 5776-5793, 1988.
[16] R. O. Lussow, “The Influence of Thermal SiO2 Surface Constitution on the Adherence of Photoresists”, 115, 660, 1968.
[17] http://www.gcsescience.com/a/r3.htm
[18] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bounds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., vol. 63, pp.1510-1512, 1993.
[19] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, Chap. 15, Wiley, New York (1982).
[20] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, pp. 340-341, Kluwer Academic Publishers (1986).
[21] L. Do Thanh and P. Balk, “Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing”, J. Electrochem. Soc., 135, pp.1797-1801, 1988.
[22] R. R. Razouk and B. E. Deal, “Dependence of Interface State Density on Silicon Thermal Oxidation Process Variables,” J. Electrochem. Soc., vol. 126, pp. 1573-1581, 1979.
[23] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003.
[24] H. D. Fuchs, M. Stutzman, M. S. Brandt, M. Rosenbauer, J. Weber, A. Breitschwerd, P. Deak, and M. Cardona, “Porous silicon and siloxene: Vibrational and structural properties,” Phys. Rev. B, vol. 48, pp. 8172-8189, 1993.
[25] M.G. Hussein, K. Wörhoff, C.G.H. Roeloffzen, L.T.H. Hilderink, R.M. de Ridder and A. Driessen, “Characterization of thermally treated PECVD SiON layers,” Department of Electrical Engineering and Applied Physics, University of Twente.
[26] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Mainamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jap. J. Appl. Phys., vol.39, pp.5794-5799, 2000.
[27] X. H. Xu, M. Wamg, Y. Hou, S. R. Zhao, H.Wang, D. Wang, S. X. Shang. “Effect of Thermal Annealing on Structural Properties, morphologies and Electrical properties of TiO2 thin film Grown by MOCVD” Cryst. Res. Technol, vol. 37, pp.431-
439, 2002.
[28] Jenq-Shiuh Chou and Si-Chen Lee, “The Initial Growth Mechanism of Silicon Oxide by Liquid-Phase Deposition,” J. Electrochem. Soc., vol. 141, pp. 3214-3218, 1994.
[29] M. K. Lee, C. H. Lin, C. N. Yang, and C. D. Yang, “The Improvement of Liquid Phase Deposition of Silicon Dioxide with Hydrochloric Acid Incorporation,” Jpn. J. Appl. Phys., vol. 37, pp. L682-L683, 1998.
[30] D. V. Tsu, G. Lucovsky, and M. J. Mamtimi, “Local Atomic Strutcure in Thin Films of Silicon Nitride and Silicon Diimide Produced by remote Plasma-enhanced Chemical-vapor Deposition”, Phys. Rev. B, vol. 33, pp. 7069-7076, 1986.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.21.233.41
論文開放下載的時間是 校外不公開

Your IP address is 3.21.233.41
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code