Responsive image
博碩士論文 etd-0726107-165957 詳細資訊
Title page for etd-0726107-165957
論文名稱
Title
以化學氣相沉積法成長(10 0)非極性氧化鋅薄膜於鋁酸鋰基板
Growth of Nonpolar ZnO (10 0) film on γ-LiAlO2 substrate by chemical vapor deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-13
繳交日期
Date of Submission
2007-07-26
關鍵字
Keywords
非極性氧化鋅、化學氣相沉積法
CVD, nonpolar ZnO
統計
Statistics
本論文已被瀏覽 5655 次,被下載 0
The thesis/dissertation has been browsed 5655 times, has been downloaded 0 times.
中文摘要
氧化鋅(ZnO)是目前國際上寬能隙半導體研究的熱門材料之一,由於它具有非常大的激子束縛能(60meV)而被廣泛關注,有望在紫外發光二極體和鐳射二極體等光電子領域獲得應用。本論文以研究氧化鋅的生長模式進而控制其生長方向為目地,以Zn(C5H7O2)2為先驅物,在不同的反應溫度、反應時間及氧氣流量下,以化學氣相沉積法(Chemical Vapor Deposition,簡稱CVD),於鋁酸鋰(LiAlO2 ,簡稱LAO) (100)基板上成長氧化鋅,並找出適合的反應參數。首先在500 ~650 ℃ 進行基板溫度變化的實驗,經掃描式電子顯微鏡(Scanning Electron Microscope,簡稱SEM)觀察表面形貌,發現在基板溫度為500℃時,主要生長的形貌有六邊型晶面結構及薄膜。再由側視圖中可見六邊型晶面結構具有二層不同結構,從底層的薄膜轉換形成柱狀結構,其中溫度及基板應力的平衡是形此結構重要的影響因素。再經XRD與電子背向散射繞射(Electron backscattering diffraction,簡稱EBSD)分析其結構與磊晶關係。其中氧化鋅在LiAlO2 (100)基板上主要生長的方向可分為二種,一為磊晶關係為ZnO(0001)// LiAlO2 (100)的c-plane氧化鋅,另一為磊晶關係為ZnO(10 0)// LiAlO2 (100)的m-plane氧化鋅,後者有更小的晶格不匹配數。二種生長方向的光學性質由PL檢測可知,皆具有非常強的紫外光放射峰以及綠光波段放射峰。而在溫度550℃與600℃之間,會形成長方形塊狀結構,它的大小會隨著溫度的增加而增加,最後在650 ℃形成均勻薄膜。所以高溫下不但有利m-plane結構的生長,更能有助側向生長而形成均勻的薄膜。然後做流量變化的實驗,由SEM觀察發現減少氧流量至50sccm會使原本m-plane均勻薄膜上出現c-plane六角晶面,並由光激光譜(Photoluminescence,簡稱PL)測出其含有大量的氧空缺,而100sccm的氧流量會比400與50sccm更能得到品質較好的m-plane薄膜。最後在基板溫度600 ℃下,改變其生長時間,由SEM觀察得知,c-plane與m-plane的氧化鋅島狀結構會隨著反應時間的增加而變大,且由X光繞射(X-ray diffraction pattern,簡稱XRD)可知其結晶品質也隨著時間的增加而變好。
Abstract
Zinc oxide (ZnO) has gained many interests in the research of wide band-gap semiconductor materials nowadays. ZnO has attracted much attention because of its high excition bound energy (60meV), and it’s promising to gain application in the field of optoelectronic such as ultraviolet light emitting devices (UV-LED) and laser diode (LD) etc. This study aims to investigate the growth condition of ZnO and to control the growth direction. ZnO was grown on LiAlO2 (LAO) (100) substrates by chemical vapor deposition (CVD) with zinc source Zn(C5H7O2)2. The different reacting temperature from 500℃ to 650℃ and the flow rate of oxygen were studied. In the result of scanning electron microscope (SEM), the surface morphology of ZnO showed two different structures, hexagonal structure and non-hexagonal film structure. And the side view of hexagonal structure showed double layers. The key factor for the transformation of double layers from film to column structure is the equilibrium of growth temperature and substrate stress. The crystals structures and epitaxial relationship were studied by X-ray Diffraction Pattern (XRD), Electron Backscattering Diffraction (EBSD). There are two kinds of ZnO epitaxial growth on LiAlO2 (100) substrate, one is c-plane of ZnO(0001)// LiAlO2 (100) and another one is m-plane of ZnO(10 0)// LiAlO2 (100), the latter one has a smaller lattice mismatch. The results of the strong UV and green emission peaking were shown in photoluminescence (PL) spectrum.
Under the control of substrate temperature, c-plane polarized ZnO films were grown at 500 ℃, and m-plane nonpolar ZnO films were grown at 650℃. Rectangular structure could be formed between 550℃ and 650℃. With the increase of substrate temperature, the size of rectangular became larger. At last, uniformed film would be formed at 650℃. In addition to benefit the formation of m-plane structure, high temperature helps the sideward growth to form uniform film. In the experiment of oxygen flow, we found that c-plane hexagonal structure appeared on the m-plane film while the oxygen flow lowered to 50 sccm. And there were large numbers of oxygen vacancies measured by PL. The oxygen flow of 100 sccm is more suitable to obtain higher quality m-plane film than 400 and 50 sccm. At last, the growth time experiments were done under the growth temperament of 600℃.Island structures of c-plane and m-plane ZnO combined with the growth time increased, and the island become larger. The XRD measurement showed that crystallinity of ZnO become better with the growth time increased.
目次 Table of Contents
摘要 I
第一章 序論 1
1-1 引言 1
1-2 研究動機 2
第二章 原理 3
2-1 氧化鋅與基板關係 3
2-2氧化鋅薄膜生長概述 5
2-3晶體結構 9
2-4 化學氣相沉積法 14
2-4-1化學氣相沉積製程說明 14
2-4-2 化學氣相沉積動力學 17
第三章 實驗方法及步驟 19
3-1 實驗流程: 19
3-1-1 基板備製 19
3-1-2 熱化學氣相沉積反應成長步驟 20
3-1-3 樣品分析儀器 20
3-2 實驗設備 20
3-2-1實驗用基板及藥品 20
3-2-2熱化學氣相沉積反應系統儀器設備 21
第四章 實驗結果與討論 23
4-1實驗參數及方法 23
4-2 氧化鋅之電子掃描顯微鏡分析 23
4-3 氧化鋅之結構分析 27
4-3-1 X光繞射(XRD)分析 27
4-3-2 Electron backscattering diffraction (EBSD)分析 29
4-4 氧化鋅之光學性質分析 30
4-5製程參數對氧化鋅成長之影響 32
4-5-1 溫度對氧化鋅成長之影響 32
4-5-2 流量對氧化鋅成長之影響 36
4-5-3 生長時間對氧化鋅成長之影響 39
第五章 結論 43
參考文獻 44
參考文獻 References
[1] Ü. Özgür, I. Alivov, A. Teke, M.A. Reshchikov, S. Goğan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
[2] R.L. Weiher, Physical Review 152, 736 (1966).
[3] W.Y. Liang and A.D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).
[4] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yap, S. Koyama, M.Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[5] Z. K. Tang, P. Yu, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
[6] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater. 4, 42 (2005)
[7] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[8] X.Y. Kong, Y. Ding, R. Yang, and Z.L. Wang, Science 303, 1348 (2004).
[9] P. Sharma, A. Gupta, K.V. Rao, F. J. Owens, R. Sharwa, R. Ahuja, J.M. Osorio Guillen, B. Johansson, and G.A. Gehring, Nature Mater. 2, 673 (2003).
[10] H. Ohno, Science 291, 840 (2001).
[11] R.F. Service, Science 276, 895 (1997).
[12] Landolt-Börnstein, New Series Group III (Springer, Berlin, 1996), Vol. 17.
[13] C.H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Appl. Phys. Lett. 82, 1848 (2003).
[14] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998).
[15] A. Ohtomo, M. Kawasaki, Y. Sakurai, I. Ohkubo, R. Shiroki, Y. Yoshida, T. Yasuda, Y. Segawa, H. Koinuma, Mater. Sci. Eng. B. 56, 263 (1998).
[16] K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).
[17] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).
[18] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78, 1237 (2001).
[19] 公司(Zn technology,UK)
[20] K. Koike, K. Hama, I. Nakashima, S. Sasa, M. Inoue, M. Yano, Jpn. J. Appl. Phys. 44, 3822 (2005).
[21] T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma and K. Kawasaki, Physica E 21, 671 (2004)
[22] Sho-Shou Lu, InGaAlAs/InP Electro-Absorption Modulator Structures Grown
by Molecular Beam Epitaxy, thesis of NSYSU, 5, 2003.
[23] T. Sasaki, S. Zembutsu, J. Appl. Phys. 61, 2533 (1987).
[24] P.Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J.Mennger, M.Ramsteiner, M.reiche and K.H.Ploog, Nature 406 865 (2000).
[25] B. Meyer, D. Marx, Phys. Rev.B 67, 035403 (2003).
[26] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe, S. Fujita, and S. Fujita, J. Cryst. Growth 209, 522 (2000).
[27] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, J. Cryst. Growth 237, 553 (2002).
[28] K. Haga, t. Suzuki, Y. Kashiwaba, H. Watanabe, B.P. Zhang, and Y. Segawa, Thin Solid Films 433, 131 (2003).
[29] E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003).
[30] C. Munuera, J. Zúniga-Pérez, J.F. Rommeluere, V. Sallet, R. Triboulet, F. Soria, V. Munoz-Sanjosé, and C. Ocal, J. Cryst. Growth 264, 70 (2004).
[31] C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, and H. Shen, J. Appl. Phys. 85, 2595 (1999).
[32] S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, and T. Siegrist, Appl. Phys. Lett. 82, 742 (2003).
[33] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, J. Cryst. Growth. 130, 269 (1993).
[34] O. Dulub L. A. Boatner and U. Diebold, Surf. Sci. 519, 201 (2002).
[35] M. H. Zhao, Z. L. Wang, S. X. Mao, Nano Lett. 4, 587 (2004).
[36] P.X. Gao and Z.L. Wang, J. Phys. Chem. B 108, 7534 (2004).
[37] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. umenoto, M. Sano, and K. Chocho, Jpn. J. Appl. Phys. 37, L309 (1998).
[38] Ding Y, Kong X Y, Wang Z L, Phys. Rev. B submitted (2004).
[39] X.Y. Kong and Z.L. Wang, Appl. Phys. Lett. 84, 975 (2004).
[40] A. Wander, F. Schedin, P. Steadman, A. Norris, R. Mcgrath, T.S. Turner, G. Thornton, and N.M. Harrison, Phys. Rev. Lett. 86, 3811 (2001).
[41] A. Umar and Y.B. Hahm, Nanotechology 17, 2174 (2006).
[42] Jih-Jen Wu, Sai-Chang Liu, Adv. Mater. 14(3) 215 (2002).
[43] J. Zúñiga-Pérez, V. Muñoz-Sanjosé, E. Palacios-Lidón, and J. Colchero, Phys. Rev. Lett. 95, 226105 (2005).
[44] Z.X. Mei, X.L. Du, Y. Wang, M.J. Ying, Z.Q. Zeng, H. Zheng, J.F. Jia, Q.K. Xue, and Z. Zhang, Appl. Phys. Lett. 86, 112111 (2005).
[45] S.-K. Hong, T. Hanada, H.-J. Ko, Y. Chen, T. Yao, D. Imai, K. Araki, and M. Shinohara, Appl. Phys. Lett. 77, 3571 (2000).
[46] H. Xiao, Introduction to semiconductor manufacturing technology, (2001).
[47] D. L. Smith, Thin Films by Chemical Vapor Deposition principle and practice, (1995).
[48] B.P. Zhang, K. Wakatsuki, N.T. Binha, N. Usami, Y. Segawaa, Thin Solid Films 449 (1-2), 12 (2004).
[49] 施敏原著,黃調元譯,半導體元件物理與製作技術,交大出版社, pp.544.
[50] K. Vanheusden, C. H. Seager, W. L. Warren, D.R. Tallant, and J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
[51] K. Vanheusden, W. L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, J. Appl. Phys. 79, 7983 (1996).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.21.86
論文開放下載的時間是 校外不公開

Your IP address is 18.191.21.86
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code