Responsive image
博碩士論文 etd-0726109-100218 詳細資訊
Title page for etd-0726109-100218
論文名稱
Title
摻雜奈米碳粒的全共軛環狀聚3-己烷基塞吩和桿狀雜環芳香族高分子之有機太陽能電池
Organic Photovoltaic Cells of Fully Conjugated Coil-like Poly-(3-hexylthiophene) and Rod-like Heterocyclic Aromatic Polymer Doped with Nano-carbon Particles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-21
繳交日期
Date of Submission
2009-07-26
關鍵字
Keywords
奈米碳粒、有機太陽能電池、全共軛高分子
Organic photovoltaic cell, Fully conjugated polymer, Nano-carbon particles
統計
Statistics
本論文已被瀏覽 5683 次,被下載 0
The thesis/dissertation has been browsed 5683 times, has been downloaded 0 times.
中文摘要
本實驗以Poly-p-phenylenebenzobisoxazole (PBO)的雜環芳香族全共軛硬桿式高分子以及聚3-己烷基塞吩(Poly-(3-hexylthiophene),P3HT)的全共軛環狀高分子為光電作用層,並混摻具有優良吸光性及導電性奈米碳粒(nano-carbon particle): [6,6]-phenyl C61-butyric acid methyl ester (PCBM)的奈米碳球及酯化多層奈米碳管(MWNT-COOC10H21),並加入一良好的電洞傳導層PEDOT:PSS,以氧化銦錫(ITO)/PEDOT:PSS/nano-carbon particle:共軛高分子/Al為主要的元件結構,製成雙層太陽能(photovoltaic)電池,並且量測元件的光性和電性。
利用ITO/PEDOT:PSS/PBO/PCBM/Al結構製作成参層太陽能電池元件,所得到的電壓-電流曲線接近一直線,太陽能電池效果並不明顯;將PCBM:P3HT混摻薄膜作為光電作用層有較好的太陽能電池效果,顯示混摻薄膜以交聯網狀結構有助於光致電轉換效率的提升。
將PCBM及酯化多層奈米碳管分別與P3HT混摻,太陽能電池效應隨著奈米碳粒增加其光致電效率有顯著提升;在PCBM及酯化奈米碳管分別與P3HT的混摻薄膜之平行膜面直流導電度(σ∥)作測量,發現隨奈米碳粒增加,導電度有增高之趨勢。
藉由電洞傳輸層(PEDOT:PSS)以及光電作用層(active layer)的薄膜厚度改變,發現將電洞傳輸層(PEDOT:PSS)薄膜厚度由90 nm降低到32 nm可使太陽能電池效率約略提升;而光電作用層PCBM:P3HT薄膜厚度在99 nm時會有最佳的吸光性和電荷傳遞,致使光致電效率的提升。
Abstract
Fully conjugated heterocyclic aromatic rod-like polymer poly-p-phenylene- benzobisoxazole (PBO) and coil-like poly-(3-hexylthiophene) (P3HT) were applied as opto-electronically active layer. The two polymers mixed with nano-carbon particles, having excellent optical absorption and electric conductivity, of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) or esterified multi-wall carbon nano-tube (MWNT-COOC10H21) as well as a hole transporting layer of PEDOT:PSS. Photovoltaic (PV) cells of indium-tin-oxide (ITO)/PEDOT:PSS/nano-carbon particle:fully conjugated polymer/Al were fabricated for optical and electrical characterizations.
Tri-layered structure of ITO/PEDOT:PSS/PBO/PCBM/Al produced a straight current-voltage relation showing no PV effects. Upon changing the active layer into PCBM doped P3HT layer (PCBM:P3HT), it produced good PV effects suggesting that the doped layer had a penetrating network to facilitate the PV effects.
When PCBM or MWNT-COOC10H21 was doped into P3HT, the device PV effects were increased significantly with nano-carbon particle concentration. The direct-current electric conductivity parallel to the film surface (σ∥)was increased with the nano-carbon particle concentration.
By changing the thickness of hole transporting PEDOT:PSS and of opto-electronically active layers, it was found that when the PEDOT:PSS layer was decreased from 90 nm to 32 nm, there was a slight increase of PV cell efficiency. The active layer of PCBM:P3HT with a thickness of 99 nm had the best optical absorption and charge transport leading to an increase of PV cell efficiency.
目次 Table of Contents
圖目錄 IV
表目錄 IX
一、緒論……… 1
1-1 前言.................................................................................................................................1
1-2 研究動機.........................................................................................................................2
二、原理與實驗 3
2-1 光致電元件結構 3
2-1-1 單層結構 ........3
2-1-2 雙層異質接面結構 4
2-1-3 混合層異質接面結構 4
2-2 光致電元件材料 5
2-2-1 陽極(Anode) 5
2-2-2 陰極(Cathode) 6
2-2-3 P3AT共軛高分子 6
2-2-4 PBX硬桿式共軛高分子 7
2-2-5 PEDOT:PSS電洞傳導層 9
2-2-6 PCBM電子傳輸材料 9
2-2-7 奈米碳管 10
2-3 應用原理 12
2-3-1 轉移機制 12
2-3-2 光電轉換原理 13
2-3-3 太陽光模擬 15
2-3-4 太陽能電池等效電路 18
2-3-5 光電特性參數 19
2-4 實驗設備 23
2-4-1 氧電漿(O2 Plasma)清洗機 23
2-4-2 旋轉塗佈機(Spin Coater) 23
2-4-3 真空熱蒸鍍機(Vacuum Thermal Evaporator) 24
2-4-4 手套箱(Glove Box)系統 25
2-4-5 太陽光模擬光源(Solar Simulator System) 25
2-4-6 電性量測:Keithley® 2400之應用 26
2-4-7 導電性量測(Electric Conductivity) / Keithley® 237之應用 27
2-4-8 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 27
2-4-9 紫外光-可見光吸收光譜(UV-Vis Absorption Spectrum) 28
三、實驗內容 30
3-1 元件的製備 30
3-1-1 PBO高分子溶液配製 31
3-1-2 P3HT高分子/PCBM溶液配製 31
3-1-3 高分子/酯化奈米碳管的溶液配製 31
3-1-4 清洗ITO玻璃 32
3-1-5 旋轉塗佈製備薄膜 32
3-1-6 PBO/PCBM薄膜製做及PCBM:P3HT混摻膜熱處理 32
3-1-7 熱蒸鍍陰極 33
3-2 元件量測 34
3-2-1 電性量測(I-V Curve) 34
3-2-2 四點探針直流電(Four-probe DC)測量法 34
3-2-3 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)量測 34
3-2-4 紫外光-可見光吸收光譜(UV-Vis Absorption Spectrum)量測 34
3-3 多層奈米碳管之化學合成改質 35
3-3-1 多層奈米碳管酸化反應 35
3-3-2 多層奈米碳管酯化反應 35
四、結果與討論 38
4-1 PBO/PCBM 異質接面太陽能電池與P3HT:PCBM混層太陽能電池 38
4-2 P3HT混摻不同比例之PCBM 42
4-3 P3HT混摻不同比例之酯化多層奈米碳管(MWNT-COOC10H21) 50
4-4 PCBM:P3HT與MWNT-COOC10H21:P3HT 之平行膜面的直流導電度 56
4-5 PEDOT:PSS與P3HT:PCBM薄膜厚度改變 65
五、結論 76
六、參考文獻 78

參考文獻 References
1. 吳誌雄,「工業材料」,第87期83年3月。
2. G. Li , V. Shrotriya , J. Huang , Y. Yao , T. Morlarty , K. Emery, and Y. Yang, Nat. Mater. , 4, 864 (2005).
3. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. , 15, 1617 (2005).
4. F. C. Chen, Q. Xu, and Y. Yang, Appl. Phys. Lett., 84, 3181 (2004).
5. M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
6. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007).
7. 紀國鐘,鄭晃忠,「液晶顯示器技術手冊」,台灣電子材料與元件協會,台北 (2004)。
8. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 94, 6849 (2003).
9. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Funct. Mater., 12, 481 (2000).
10. S. Iijima, Nature, 354, 56 (1991).
11. O. Zhou, R. M. Fleming, and D. W. Murphy, Science, 263, 1774 (1994).
12. H. Dai, E. W. Wong, and C. M. Lieber, Science, 272, 523 (1996).
13. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 382, 54 (1996).
14. C. Velasco-Santos, Chem. Mater. , 15, 4470 (2003).
15. Y. P. Sun , K. Fu, Y. Lin, and W. Huang, Acc. Chem. Res, 35, 1096 (2002).
16. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys, 93, 3693(2003)
17. 張正華,「有機與塑膠太陽能電池」,五南圖書出版公司,台北 (2007)。
18. P. W. Atkins, “Kurzlehrbuch Physikalische Chemie,” Wiley-VCH, Germany (2001)
19. R. Hulstrom, R. Bird, and C. Riordan, Sol. Cells, 15, 365 (1985).
20. S. M. Sze, “Physics of Semiconductor Device,” John Wliey & Sons, New York (1981).
21. 莊嘉琛,「太陽能工程-太陽電池篇」,全華圖書股份有限公司,台北 (1997) 。
22. 陳金鑫,黃孝文,「有機電激發光材料與元件」,五南圖書出版公司,台北 (2006)。
23. C. C. Wu, "Luminescence of Light Emitting Diodes of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer ," Ph.D. Thesis, National Sun Yat-Sen Univrsity (Kaohsiung) (2003).
24. H. Y. Cheng, "Electrode Modifications of Molecular Light Emitting Diodes," Master Thesis, National Sun Yat-Sen University (Kaohsiung) (2003).
25. 施敏,「半導體元件物理與製作技術」,國立交通大學出版社,新竹 (2003)。
26. H. C. Liao "Package of Homojunction of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer Light Emitting Diodes," Master Thesis, National Sun Yat-Sen Univrsity (Kaohsiung) (2004).
27. http://www.toyobo.co.jp/e/seihin/kc/pbo/technical.pdf (2004)
28. M. A. Ibrahim, H. K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss, Organic Electronics, 6, 65 (2005)
29. J. S. Lin, "In-situ chemical synthesis and Light Emitting Diodes of Non-fully conjugated Hetrocyclic Aromatic polymer with Functionalized Multi-wall carbon Nanotube " Master Thesis, National Sun Yat-Sen University (Kaohsiung)
30. R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y. J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest, and J. J. Brown, Appl. Phys. Lett., 81, 162 (2002).
31. M. M. Alam and S. A. Jenekhe, Macromolecules, 17, 4775 (2002)
32. A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, Appl. Phys. Lett., 87, 203511 (2005)
33. S. Berson, R. D. Bettignies, S. Bailly, S. Guillerez, and B. Jousselme, Adv. Funct. Mater., 17, 3363 (2007)
34. S. A. Jenekhe and J. A. Osaheni, Science, 265, 765 (1994)
35. A. Babel and S. A. Jenekhe, J. Phys. Chem. B, 106, 6129 (2002)
36. J. Huang, G. Li , and Y. Yang, Appl. Phys. Lett, 87, 112105 (2005)
37. D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, Nanotechnology, 15, 1317 (2004)
38. Y. Kin, S. A. Choulis, J. Nelson, and D. D. C. Bradley, J. Mater. Sci, 40, 1371 (2005)
39. A. J. Miller, R. A. Hatton, and S. P. Silva, Appl. Phys. Lett, 89, 123115 (2006)
40. B. Pradhan, S. K. Batabyal, and A. J. Pal, Appl. Phys. Lett, 88, 93106 (2006)
41. E. Kymakis, N. Kornilios, and E. Koudoumas, J. Phys. D:Appl. Phys. , 41, 165110 (2008)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.93.221
論文開放下載的時間是 校外不公開

Your IP address is 3.145.93.221
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code