Responsive image
博碩士論文 etd-0726109-161606 詳細資訊
Title page for etd-0726109-161606
論文名稱
Title
可應用於感知無線電系統之射頻感測與接收電路
RF Sensing and Receiving Circuits for a Cognitive Radio
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-06
繳交日期
Date of Submission
2009-07-26
關鍵字
Keywords
感測器、注入牽引、注入鎖定
Injection Pulling, Injection Locking, Sensor
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
本論文首先對振盪器注入鎖定與牽引現象做理論分析整理與討論,並推導當注入訊號為調制訊號時的鎖定方程式。論文中也提出一種利用注入鎖定與頻率解調技術實現出可應用於感知無線電系統之創新射頻感測電路,並且詳加說明電路架構與運作原理。在實驗上,分別以混成及晶片壓控振盪器搭配其他元件建立射頻感測器,在模擬上則使用離散時間數值方法,實驗測量與模擬預測結果相當吻合。本射頻感測器的頻譜掃描速度可高達400 MHz/ms,並可感測到功率小於-80 dBm的訊號,充分顯示出本射頻感測電路可快速且有效的偵測出類比與數位調制訊號的頻率位置與功率大小。
Abstract
In this thesis, various kinds of theory to account for injection locking and pulling in the literature are studied and compared. On this basis, this thesis derives a generalized locking equation when injection signal is modulated signal. In applications, a novel RF sensing circuit for cognitive radio system is proposed using injection locking and frequency demodulation. Detailed circuit architecture and sensing principle are also described in the thesis. In implementation, a hybrid VCO and a CMOS VCO have been separately used with the other components to establish the RF sensing circuit. The simulation relies on a discrete-time numerical method. Comparison between measurement and simulation shows very good agreement. This RF sensing circuit can simultaneously sense frequency and power with a sensing speed up to 400 MHz/ms and a sensing sensitivity as low as -80 dBm, showing that the presented prototype can fast and reliably sense frequency and power for analog and digital modulation signals.
目次 Table of Contents
目錄 I
圖表目錄 III
第一章 序論 1
1.1 背景簡介 1
1.2 感知無線電運作原理 2
1.3 現有頻譜感測器架構 4
1.3.1 軟體演算法實現方式 4
1.3.2 硬體電路實現方式 6
1.4 現有架構之潛在缺點與本論文章節介紹 7
第二章 本地振盪源注入現象理論分析 8
2.1 相關論文歷史沿革 8
2.2 適用於調制訊號之注入感擾理論分析 13
2.2.1 電路模型及其假設 13
2.2.2 鎖定範圍 16
2.2.2 頻率牽引 17
2.2.2 同步條件 19
第三章 射頻感測與接收電路設計及實驗設置 22
3.1 系統架構與感測機制 22
3.1.1 系統架構 22
3.1.2 感測過程理論分析 23
3.1.3 頻率解調器 26
3.1.4 頻率及功率偵測 28
3.1.5 離散時間分析 29
3.2 採用VCO混成電路之感測器實驗設置 31
3.2.1 注入干擾 31
3.2.2 頻率解調 38
3.3 採用VCO混成電路之感測器實驗結果 43
3.3.1 弦波訊號注入 44
3.3.2 調制訊號注入 47
3.3.3 接收機操作模態 53
第四章 CMOS晶片設計與量測 56
4.1具有注入訊號輸入埠之壓控振盪器 56
4.1.1 電路設計 56
4.1.2 量測結果 60
4.1.3 採用VCO晶片電路之感測器實驗設置 63
4.1.4 採用VCO晶片電路之感測器實驗結果 64
4.2主動式積體化巴倫器 67
4.2.1 電路設計 67
4.2.2 量測結果 70
第五章 結論 74
參考文獻 75
參考文獻 References
[1] “Spectrum policy task force report,” Federal Communications Commission, Tech. Rep. 02–155, Nov 2002.
[2] “Unlicensed operation in the tv broadcast bands and additional spectrum for unlicensed devices below 900 Mhz in the 3 Ghz band,” Federal Communications Commission, Notice of Proposed Rulemacking NO. 04–186, May 2004.
[3] D. Cabric, S.M. Mishra, and R.W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in 38th Asilomar Conf. Signals, Systems and Computers 2004, pp.772–776.
[4] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Elsevier Journal on Computer Networks, pp. 2127–2159, May 2006.
[5] FCC. Et docket no. 03-322. Notice of Proposed Rule Making and Order, Dec. 2003.
[6] K. Kim, J. Min, S. Hwang, S. Lee, K. Kim, and H. Kim, “A CR platform for application in TV whitespace spectrum,” in 3rd International Conference on CrownCom 2008, pp. 1–6.
[7] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: making software radio more personal,” IEEE Personal Communications, vol.6, pp. 13–18, no. 4, Aug. 1999.
[8] J. Mitola III, “Cognitive radio for flexible mobile multimedia communications,” IEEE Mobile Multimedia Communications, pp. 3–10, Nov. 1999.
[9] J. Mitola III, “Cognitive infosec,” in 2003 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1051–1054.
[10] B. Ackland and I. Seskar, “High performance cognitive radio platform with integrated physical & network layer capabilities” presented at the Berkeley Wireless Research Center Cognitive Radio Workshop, Berkeley, CA, Nov. 1, 2004.
[11] J. G. Proakis, Digital Communications, 4th ed. New York: McGRAW-Hill, 2001.
[12] G. Genesan and Y. G. Li, “Cooperative spectrum sensing in cognitive radio networks,” in 2005 IEEE Int. Symp., Dynamic Spectrum Access Networks, pp. 137–143.
[13] W. A. Gardner, “Spectral correlation of modulated signals: part I-analog modulation,” IEEE Trans. on Communications, vol. 35, no. 6, pp. 584–594, June 1987.
[14] S. M. Winter, H. J. Ehm, A. Koelpin, and R. Weigel, “Diode power detector DC operating point in six-port communications receivers,” in 37th European Microwave Conf. 2007, pp. 795–798
[15] S. Ho, “A 450 MHz CMOS RF power detector,” in 2001 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp. 209–212.
[16] A. Mayer, L. Maurer, G. Hueber, T. Dellsperger, T. Chtisten, T. Burger, and Z. Chen, “RF front-end architecture for cognitive radios,” in Proc. 18th Annu. Personal, Indoor and Mobile Radio Comm. Symp., 2007, pp. 1–5.
[17] R. Adler, “A study of locking phenomena in oscillators,” Proc. IRE, vol. 34, no. 6, pp. 351–357, June 1946.
[18] R. C. Mackey, “Injection locking of klystron oscillators,” IRE Trans. Microwave Theory and Tech., vol. 10, no. 4, pp. 228–235, July 1962.
[19] L. J. Paciorek, “Injection locking of oscillators,” Proc. IEEE, vol. 53, no. 11, pp. 1723–1727, Nov. 1965.
[20] R. D. Huntoon and A. Weiss, “Synchronization of oscillators,” Proc. IRE, vol. 35, no. 12, pp. 1415–1423, Dec. 1947.
[21] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” Proc. IEEE, vol. 61, no. 10, pp. 1386–1410, Oct. 1973.
[22] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415–1424, Sep. 2004.
[23] A. Mirzaei, M. E. Heidari, and A. A. Abidi, “Analysis of oscillators locked by large injection signals: generalized Adler’s equation and geometrical interpretation,” in Proc. IEEE Custom Integrated Circuits Conf., 2006, pp. 737–740.
[24] M. E. Heidari and A. A. Abidi, “Behavioral models of frequency pulling in oscillators,” in 2007 IEEE Int. Behavioral Modeling and Simulation Workshop, pp.100–104.
[25] H. L. Stover and R. C. Shaw, “Injection-locked oscillators as amplifiers for angle-modulated signals,” in 1966 IEEE G-MTT Int. Symp. Dig., pp. 60–66.
[26] F. Ramirez, V. A. Arana, and A. Suarez, “Frequency demodulator using an injection-locked oscillator: analysis and design,” IEEE Microwave and Wireless Component Lett., vol. 18, issue 1, pp. 43–45, Jan. 2008.
[27] C.-J. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking and frequency demodulation for cognitive radio applications,” in 2009 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1165–1168.
[28] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. New York: Wiley, 1990, Chapter 6.
[29] S. Haykin, Communication Systems, 4th ed. New York: Wiley, 2001.
[30] C. J. Li, C. H. Hsiao, F. K. Wang, T. S. Horng, and K. C. Peng, “A rigorous analysis of local oscillator pulling in frequency and discrete–time domain” in 2009 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp. 409–412.
[31] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
[32] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, pp. 717–724, May 1999.
[33] W. HongMo, A. Hajimiri, and T. H. Lee, ”Comments on design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, pp. 286–287, Feb. 2000.
[34] J. Lin, J. G. Ma, K. S. Yeo, and M. A. Do, “9.3-10.4-GHz-band cross-coupled complementary oscillator with low phase-noise performance,” IEEE Trans. Microwave Theory and Tech., vol. 52, no. 4, pp. 1273–1278, Apr. 2004.
[35] M. Tiebout, “Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1018–1024, July 2001.
[36] D. Park, and S. Cho, “A power-optimized CMOS LC VCO with wide tuning range in 0.5-V supply,” in Proc. IEEE Symp. Circuits and System 2006, pp. 3233–3236.
[37] J.G. Atallah, S. Rodriguez, L.R. Zheng, and M. Ismail, “A direct conversion WiMAX RF receiver front-end in CMOS technology, “in 2007 IEEE Int. Symp. Signals , Circuits and Systems, vol.1, p.p.1–4.
[38] D.R. Huang, S.W. Kao, and Y.H. Pang, “A WiMAX receiver with variable bandwidth of 2.5-20 MHz and 93 dB dynamic gain range in 0.13μm CMOS process, ” in 2007 IEEE Radio Frequency Integrated Circuits Symp. Dig., p.p.369–372.
[39] Adiseno, G. Wiranto, and T. M. S. Soegandi, ”A low-cost CMOS reconfigurable receiver for WiMAX applications, “in IEEE Int. Conf. Semiconductor Electronics 2006, pp.346–351.
[40] M. K. Raja, T. T. C. Boon, K. N. Kumar, and W. S. Jau, “A fully integrated variable gain 5.75 GHz LNA with on-chip BALUN for WLAN” in 2003 IEEE Radio Frequency Integrated Circuits Symp. Dig., p.p. 8–10.
[41] H. Ma, S.S. Fang, and F. Lin, “ Novel active differential phase splitters in RFIC for wireless applicaions” IEEE Trans. Microwave Theory and Tech. Vol.46, no.12, p.p. 2597–2603, Dec.1998
[42] S. Y. Lee, and C.C. Lai, “A 1-V wideband low-power CMOS active differential power splitter for wireless communication,” IEEE Trans. Microwave Theory and Tech., Vol.55, no.8, pp.1593–1600, Aug. 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.222.146.114
論文開放下載的時間是 校外不公開

Your IP address is 44.222.146.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code