Responsive image
博碩士論文 etd-0726110-123436 詳細資訊
Title page for etd-0726110-123436
論文名稱
Title
大型海藻龍鬚菜應用於鹹水型人工濕地廢水處理可行性之研究
Feasibility of Application of Macroalgae(Gracilaria;Rhodophyta) for Wastewater Treatment in Saline Constructed Wetlands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-08
繳交日期
Date of Submission
2010-07-26
關鍵字
Keywords
大型海藻、龍鬚菜、鹹水型人工濕地、人工濕地模型槽
Constructed wetland model tank, Macroalgae, Gracilaria, Saline constructed wetland
統計
Statistics
本論文已被瀏覽 5689 次,被下載 1972
The thesis/dissertation has been browsed 5689 times, has been downloaded 1972 times.
中文摘要
人工濕地是一種對環境友善且經濟的廢水處理技術。大鵬灣國家風景區管理處即利用國內少見的鹹水型人工濕地,將鄰近區域之養殖與生活排放廢水截留至濕地內進行處理。於先前研究的水質監測中發現大鵬灣之濕地內存在大型海藻龍鬚菜,預期大型海藻亦可增加人工濕地之廢水處理能力。文獻證實,大型海藻龍鬚菜可利用於養殖廢水的處理,藉以吸收水體中的營養鹽使其生長,並可減少因過多營養鹽而造成水體藻華的情形。本研究即探討大型海藻龍鬚菜在鹹水型人工濕地廢水處理的應用,並以實驗室規模的研究設計人工濕地模型槽來嘗試培養龍鬚菜,探討對於水質處理的情況。研究顯示,大型海藻龍鬚菜於批次培養的系統中,可提升實驗污水的溶氧及pH,並在10 g/L之密度培養4天的情況下在可有效降低水體葉綠素a濃度達79.10 ± 7.62 %之去除率,以及總氮、總磷47.10 ± 25.93 %與60.49 ± 45.29 %的去除率,其中氨氮濃度的下降於培養1天後非常明顯。而在連續流式培養於模型槽的系統中發現,在濁度、葉綠素a、BOD的檢測對龍鬚菜添加的實驗組上有明顯的差異,其中長期監測葉綠素a的部份,未添加龍鬚菜之對照組明顯增加,但有龍鬚菜的組別可抑制葉綠素a濃度的提升。在氮移除的長期監測過程中,對於氨氮在實驗組的平均去除率可高達92.27 ± 3.82 %,且在第一天培養的水質監測中亦可看出明顯的濃度下降趨勢。磷的去除上,於土壤有無對水質的差異比較中也顯示磷的去除效果在有土壤的情況下仍較明顯。於連續流實驗組系統中,龍鬚菜的添加可增加模型槽系統對總氮及總磷的去除平均可達到75.23 ± 2.46 %及53.96 ± 11.18 %。上述於實驗室研究的成果與大鵬灣人工濕地現場龍鬚菜生長前後的水質成果比較,可證實現場污染物與營養鹽去除率
的提升與龍鬚菜有關。
Abstract
Constructed wetland treatment systems are environmental-friendly and economic technologies for wastewater treatments. The Dapeng Bay National Scenic Area Administration collected the wastewaters from the salty water aquacultural ponds and community households in the adjacent areas and discharged them into salty water type of constructed wetland treatment systems, which is quite rare in Taiwan presently. According to the surveying result of water quality in these constructed wetland treatment systems in previous study, we found that some species of macroalgae Gracilaria, were existed in some units of the wetland systems. Further, we found that the wastewater treatment efficiencies of the constructed wetland systems could be substantially enhanced by the macroalgae. Reviewing some literatures also confirmed that the macroalgae, Gracilaria, can be effectively applied to aquaculture wastewater treatment because it is able to absorb the nutrients and benefits its own growth. Besides, it can reduce the algal bloom caused by excess nutrients.
In this study, we explored the macroalgae Gracilaria’s role in those saline constructed wetland wastewater treatment systems. In the laboratory scale study, a constructed wetland model tank was designed to culture Gracilaria as a way to explore the situation of wastewater treatment. The experimental results showed that when cultured in the still water system, the macroalgae, Gracilaria, was able to increase both of the levels of dissolved oxygen and pH in wastewater. Moreover, when it was cultured in its biomass density of 10 g/L for 4 days, the removal efficiency of chlorophyll-a concentration could ideally reach to 79.10 ± 7.62 %, while the total nitrogen, and total phosphorus could reach to 47.10 ± 25.93 % and 60.49 ± 45.29 % respectively. However, the reduction of ammonia nitrogen concentration was found rather obvious only one day after culture.
Whereas, when the species of Gracilaria was cultured in the continuous flow system, we found that there were significant difference in the test result of the turbidity, chlorophyll-a, and BOD in the experimental group with addition of Gracilaria. After testing the concentrutions of chlorophyll-a over a long period of time, we found that the chlorophyll-a concentration were markedly increased when Gracilaria was not added. On the contrary, the chlorophyll-a concentration was remained stably when Gracilaria was added. When it comes to the nitrogen removal, we found that the removal efficiency of ammonia nitrogen in the experimental group could reach up to 92.27 ± 3.82 % in average. Other than that, it was found obvious decrease of the ammonia nitrogen concentration on the first day of culture. As to the test of soil’s impact on the phosphorus removal, we found that the removal efficiency in the experimental group was higher than the group without soil. Therefore, the removal efficiency was found obviously higher when there was soil. In the continuous flow system, when the species of Gracilaria was added, the removal efficiency of total nitrogen and total phosphorus in the model tank could reach averagely up to 75.23 ± 2.46 % and 53.96 ± 11.18 %, respectively.
Comparing the experimental results by growth of Gracilaria for water quality with laboratory study and the saline constructed wetland systems in the Dapeng Bay, we found that the removal efficiencies of contaminants and nutrients could be enhanced by Gracilaria.
目次 Table of Contents
中文摘要………………………………………...……………………………Ⅰ
Abstract……………………………………………………………………Ⅱ~Ⅲ
目錄……………………………………………….………………………Ⅳ~Ⅴ
表目錄……………………………………………...…………………………Ⅵ
圖目錄……………………………………………….……………………Ⅶ~Ⅷ
第一章 前言……………………………………………………………………1
1.1 研究動機………………………..………………………………………1
1.2 研究目的…………………………..……………………………………3
第二章 文獻回顧………………………………………………………………5
2.1 濕地概論…………………………………………………………………5
2.1-1 濕地定義…………………………………………………………….5
2.1-2 濕地功能…………………………………………………………….7
2.1-3 濕地的形成與分類………………………………………………….8
2.1-4 濕地的結構………………………………………………………….9
2.2 人工濕地概論………………………………………………………..…10
2.2-1 人工濕地的型態……………………………………………...……11
2.2-2 人工濕地去除污染物之機制……………………………………...15
2.2.2-1 懸浮固體與有機物的移除作用………………………………..17
2.2.2-2 氮的移除作用…………………………………………………..18
2.2.2-3 磷的移除作用…………………………………………………..21
2.2-3 案例介紹-大鵬灣鹹水型人工濕地……………………………...22
2.3 大型海藻龍鬚菜概述…………………………………………………..25
2.3-1 藻類簡介…………………………………………………………...25
2.3-2 藻類生長因子及營養鹽吸收機制………………………………...27
2.3-3 龍鬚菜吸收營養鹽之相關研究…………………………………...29
2.3.3-1 環境因子對龍鬚菜吸收營養鹽的影響………………………..29
2.3.3-2 營養鹽因子對龍鬚菜吸收營養鹽的影響……………………..30
2.4 大型海藻龍鬚菜對赤潮抑制之作用………………………..…………31
2.5 龍鬚菜於養殖廢水處理之應用………………………...……………34
第三章 研究方法與設備……………………………………………………..37
3.1 研究流程說明……………………………………………..……………37
3.2 大鵬灣人工濕地龍鬚菜生長調查與水質監測………………………..38
3.3 龍鬚菜批次實驗………………………………………………………..39
3.3-1 藻樣與實驗污水取得………………………………...……………39
3.3-2 環境條件…………………………………………………………...39
3.3-3 實驗方法…………………………………………………………...40
3.4 實驗室規模人工濕地模型槽建立……………………………………..40
3.4-1 污水貯水槽……………………………………………………….41
3.4-2 水位控制箱……………………………………………………….41
3.4-3 溢流水承接……………………………………………………….42
3.4-4 進出流管線……………………………………………………….42
3.4-5 FWS實驗槽………………………………………………………42
3.4-6 實驗系統之操作………………………………………………….44
3.5 模型槽連續流實驗……………………………………………………..44
3.6 採樣及分析………………………………………..……………………46
3.6-1 採樣頻率與監測項目……………………………………………...46
3.6.1-1 龍鬚菜批次實驗……………………………………………...46
3.6.1-2 模型槽連續流實驗…………………………………………...47
3.6-2 分析儀器及設備…………………………………………………...47
3.6-3 水樣保存…………………………………………………………...47
3.6-4 分析方法…………………………………………………………...47
3.7 資料處理與分析………………………………………………………..48
第四章 結果與討論…………………………………………………………..51
4.1 龍鬚菜現地生長調查與水質比較……………………………………..51
4.2 龍鬚菜批次實驗……………………………………………………...57
4.2-1 現場監測資料………………………………...……………………57
4.2-2 培養期間營養鹽及葉綠素a之變化…………………………….....64
4.2-3 去除效率…………………………………………………………...75
4.3 模型槽連續流實驗…………………………………………………...76
4.3-1 現場監測資料……………………………………………………...76
4.3-2 龍鬚菜與否對於污染物處理之差異性…………………………...84
4.3-3 土壤對於龍鬚菜去除污染物之差異性……………………….....102
4.3-4 去除效率…………………………………………………..……...103
第五章 結論與建議…………………………………………………………105
5.1 結論……………………………………………………………………105
5.2 建議……………………………………………………………………107
第六章 參考文獻……………………………………………………………109
附錄一 各階段實驗之變異數相關分析…………………………………….115
附錄二 T檢定分析………………………………………………………….123
附錄三 照片部分……………………………………………………………127
參考文獻 References
Arnon, D.I., Stout, P.R., 1939. The essentiality of certain elements in minute quantity for plants, with special reference to copper. Plant Physiol, 14,
371-375.
Brown, J.J., Glenn, E.P., Fitzsimmons, K.M., Smith, S.E., 1999. Halophytes for the treatment of saline aquaculture effluent. Aquaculture, 175, 255-268.
Chow, F.Y., Macchiavello, J., Cruz, S.S., Fonck, E., Olivares, J., 2001. Utilization of Gracilaria chilensis (Rhodophyta : Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters, and sea urchins. Journal of the World Aquaculture Society, 32, 215-220.
Conter, J.B., Wetzel, R.G., 1992. Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterior plankton. Limnol Oceanogr, 37(2), 232-243.
Dawes, C.J., Koch, E.W., 1990. Physicological responses of the red algae Gracilaria Verrucosa and G. tikvahiae before and after nutrient enrichment. Bull. Mar. Sci, 46(2), 335-344.
DeBoer, J.A., 1981. Nitrients. in: C.S. Lobban, M.J. Wynne (Ed.) The Biology of Seaweeds. Blankwell Scirntific, pp. 356-391.
Forni, C., Chen, J, Tancioni, L., Caiola, M.G., 2001. Evaluation of the fern Azolla for growth, nitrogen and phosphorus removal from wastewater. Water Research, 35(6), 1592-1598.
Graham, L.E., Wilcox, L.W., 2000. Algae. Prentice-Hall, Inc., pp. 23-26.
Hayashi, L., Yokoya, N.S., Ostini, S., Pereira, R.T.L., Braga, E.S., Oliveira, E.C., 2008. Nutrients removed by Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in integrated cultivation with fishes in re-circulating water. Aquaculture, 277, 185-191.
Kadlec, R.H., Knight, R.L., Vymazal, J., Brix, H., Cooper, P., Haberl, R., 2000. Types of the constructed wetlands constructed wetlands for pollution control. IWA Publishers, London, UK, pp. 1-10, 17-22, 61-66.
Barsanti, L., Gualtieri, P., 2006. Algae: anatomy, biochemistry, and biotechnology. Taylor & Francis Group, LLC, pp. 159-180.
Lin, Y.F., Jing, S.R., Lee, D.Y., Wang, T.W., 2002. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209, 169-184.
Lobban, C. S., Harrison, P. J., 1997. Seaweed ecology and physiology. Cambridge University Press, New York, pp. 163-209.
Jones, A.B., Dennison, W.C., Preston, N.P., 2001. Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal
absorption: a laboratory scale study. Aquaculture, 193, 155-178.
Matos, J., Costa, S., Rodrigues, A., Pereira, R., Pinto, I.S., 2006. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture, 252, 31-42.
Mitsch, W.J., Gosselink, J.G., 2000. Wetlands, 3nd ed. John Wiley & Sons, Inc., pp. 171-186, 722.
O’Kelley, J.C., 1974. Inorganic nutrient. in: W. D. P. Stewart. (Ed.) Algal Physiology and Biochemistry. Blankwell Scirntific, pp610-635.
Painter, H.A., Loveless, J.E., 1983. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in activated sludge process. Wat. Res., 17, pp. 237-248.
Reddy, K.R., Khaleel, R., Overcash, M.R., Westerman, P.W., 1979. A nonpoint source model for land areas receiving animal wastes. L. Mineralization of organic nitrogen. Trans. ASAE, 22, 863-876.
Reed, R.H., 1990. Solute accumulation and osmotic adjustment. in: K.M. Cole, R.G. Sheath. (Ed.) Biology of the red algae. Cambridge University Press, New York, pp. 149-153.
Round, F.E., 1981. The ecology of algae. Cambridge University Press, New York, pp. 476-483.
Tchobanoglous, G., 1993. Constructed wetlands and aquatic plant systems: research, design, operational, and monitoring issues. in: G. A. Moshiri. (Ed.) Constructed wetlands for water quality improvement. Lewis Publishers, Boca Raton, pp. 23-34.
Thomas, T.E., Harrison, P.J., 1985. Effect of nitrogen supply on nitrogen uptake, accumulation and assimilation in Porphyra perforate (Rhodophyta),
Mar. Biol., 85, 269-278.
Vymazal, J., 1999. Nitrogen removal in constructed wetlands with horizontal sub-surface flow-can we determine the key process? in: J. Vymazal. (Ed.) Nitrient Cycling and Retention in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands, pp. 1-3.
Waite, T.D., Mitchell, R., 1972. The effect of nutrient fertilization on the benthic alga Ulva lactuca. Bot. Mar., 15, 151-156.
Watson, J.T., Reed, S.C., Kadlec, R.H., Knight, R.L., Whitehouse, A.E., 1989. Performance expectations and loading rates for constructed wetlands. in: D. A. Hammer. (Ed.). Constructed wetlands for wastewater treatment. Lewis, pp. 319-351.
West, J.A., Hommersand, M.H., 1981. Rhodophyta: Life histories. in: C.S. Lobban, M.J. Wynne (Ed.) The Biology of Seaweeds. Blankwell Scirntific, pp. 170-171, 178.
Yang, Y.F., Fei, X.G., Song, J.M., Hu, H.Y., Wang, G.C., Chung, I.K., 2006. Growth of Grailaria lemaneiformis under cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture, 254,
248-255.
Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X., Zhang, F., 2006. Bioremediation potential of the macrealga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture, 252, 264-276.
中山大學水資源研究中心, 2008. 人工濕地水質調查及經營管理規劃評估. 交通部觀光局大鵬灣國家風景區管理處委託.
中山大學水資源研究中心, 2009. 人工濕地水質調查及經營管理規劃評估. 交通部觀光局大鵬灣國家風景區管理處委託.
江永棉, 王瑋龍, 黃淑芳, 1990. 台灣海藻簡介. 台灣省立博物館.
李娟, 黃凌風, 郭丰, 菜阿員, 鄭穎, 2006. 細基江蓠對氮、磷營養鹽的吸收及其對赤潮發生的抑制作用. 廈門大學學報, 46(2), 221-225.
孟范平, 劉宇, 王震宇, 2009. 海水污染植物修復的研究與應用. 海洋環境科學, 28(5), 588-593.
徐永健, 錢魯閩, 2004. 水動力條件對龍鬚菜N吸收的影響. 海洋環境科學, 23(2), 32-35.
陳忠信, 1996. 龍鬚菜於不同營養狀況下對無機氮之吸收及其於養殖池上之應用. 農委會漁業特刊, 58, 257-274.
莊玉珍, 王惠芳, 2001. 台灣的濕地. 遠足文化.
葉宣顯, 林昇衡, 郭柏良, 洪文隆, 2004. 以MIEX離子交換樹脂處理高總有機碳原水之硏究. 中華民國自來水協會, pp. 4-6.
張善東, 俞志明, 宋秀賢, 宋飛, 王悠, 2005. 大型海藻龍鬚菜與東海原甲藻間的營養競爭. 生態學報, 25(10), 2676-2680.
張善東, 宋秀賢, 王悠, 俞志明, 2005. 大型海藻龍鬚菜與錐狀斯氏藻間的營養競爭研究. 海洋與湖沼, 36(6), 556-561.
黃瑞珉, 2005. 養殖廢污以龍鬚菜充分利用型之循環水系統設計. 國立台灣大學生物環境系統工程學系碩士論文.
趙先庭, 劉雲凌, 張繼輝, 曲克明, 馬德林, 2007. 龍鬚菜處理海水養殖廢水的初步研究. 海洋水產研究, 28(2), 23-27.
蔡凱元, 2004. 以人工濕地處理垃圾滲出水可行性之研究. 國立中山大學海洋環境及工程學系碩士論文.
劉婷婷, 楊宇峰, 葉長鵬, 王朝曄, 2006. 大型海藻龍鬚菜對兩種海洋赤潮藻的生長抑制效應. 暨南大學學報(自然科學版), 27(5), 754-759.
盧少勇, 金相燦, 余剛, 2006. 人工濕地的磷去除機制. 生態環境, 15(2), 391-396.
錢魯閩, 徐永健, 王永胜, 2005. 營養鹽因子對龍鬚菜和菊花江蓠氮磷吸收速率的影響. 台灣海峽, 24(4), 546-552.
錢魯閩, 徐永健, 焦念志, 2006. 環境因子對龍鬚菜和菊花心江蓠N、P吸收速率的影響. 中國水產科學, 13(2), 257-262.
國際拉姆薩公約網站, 何謂濕地. http://www.ramsar.org/cda/en/ramsar-about-faqs-what-are-wetlands/main/ramsar/1-36-37%5E7713_4000_0__
社團法人台灣濕地保護聯盟,濕地的定義. http://www.wetland.org.tw/newweb/wetland/WhatIsWetland.htm
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code